
An Interface for a
Fragment Assembly Kernel

Susan Larson
Mudita Jain
Eric Anson
Gene Myers

TR 96-04

An Interface for a
Fragment Assembly Kernel*

Susan Larson
Mudita Jain
Eric Anson
Gene Myers

TR 96-04

ABSTRACT

This document describes the C programming language interface to our Fragment Assembly Kernel library.
Inputs to the Fragment Assembly Kernel are (1) DNA fragment sequences from potentially inaccurate
sequencing experiments, and (2) optional constraints on fragment assembly such as known fragment overlaps
or relative fragment orientation. Fragment sequence version control is supported. The Fragment Assembly
Kernel produces the most probable reconstructions of the original DNA sequence from the fragments, subject
to any specified constraints. Each fragment assembly includes multiple sequence alignment and consensus
sequences. Multiple sequence alignment editing capabilities are provided to allow manual correction of
sequence errors.

March 10, 1996

Department of Computer Science

The University of Arizona

Tucson, Arizona 85721

*This work was supported in part by DOE Grant DE-FG03-94ER61911.

An Interface for a Fragment Assembly Kernel

1. Overview

At a conceptual level, the problem of assembling DNA sequence fragments naturally divides into three
phases. In the overlap phase each fragment is compared against every other fragment to see if they share a com-
mon subsequence, implying that they were potentially sampled from overlapping stretches of the original strand.
Each pair of fragments is compared in two ways: with both fragments in the same relative orientation, and with
one of the fragments having been reverse-complemented. The result of this first phase may be thought of as an
overlap graph in which each fragment is modeled as a vertex and each statistically significant overlap between
two sequences is modeled as a directed edge between the vertices representing them.

The second, layout phase takes the overlap graph as input and generates a series of alternate assemblies or
layouts of the fragments based on the pairwise overlaps therein. A layout specifies the relative locations and
orientations of the fragments with respect to each other and is typically visualized as an arrangement of overlap-
ping directed lines, one for each fragment. The general criterion for the layout phase is to produce plausible as-
semblies of maximun likelihood, but with the advent of mixed-mode sequencing strategies, may also be required
to meet an additional set of constraints. We advocate that the layout algorithm must be generative, i.e. produce
a sequence of layouts in decreasing order of "quality". For example, it is important to know if there is more than
one way to put the pieces together, especially if different solutions appear equally plausible. In such a case, one
would return to the lab and obtain additional information to remove the ambiguity.

The final, multi-alignment phase uses more information than just the pairwise alignments in the layout.
The sequences of all the fragments in a layout are simultaneously aligned, giving a final consensus sequence as
the desired reconstruction of the original strand. We think of these final multi-alignments as being a resulting
assembly.

The Fragment Assembly Kernel (FAK) facilitates the creation of three types of objects: overlap graphs,
constraint sets, and assemblies. Overlap graphs record versions of fragment sequences and the overlaps
between them. Constraint sets store information about fragment relationships, such as fragments that are known
to overlap or to not overlap, or fragments that are in the same orientation or are reverse complemented with
respect to each other. For a given overlap graph and an associated constraint set, a series of fragment assemblies
can be generated. In generating an assembly, fragments are assembled into contigs, or groups of overlapping
fragments, and a multi-alignment is computed for each contig. Each successive assembly is built up from a dif-
ferent "seed" edge from the overlap graph, to increase the likelihood that the resulting assembly is different from
any preceding assemblies.

Functions are provided to create and destroy overlap graphs, constraint sets, and assemblies, and to read
and write them to and from disk files. Each object created by a Fragment Assembly Kernel function is persistent
until it is destroyed by another FAK function. FAK routines allow access to information about fragments in a
contig, such as fragment position, orientation, and type of overlap. The Fragment Assembly Kernel provides
functions for editing the multiple sequence alignments so that errors in fragment sequences may be corrected
manually.

2. Initialization, Error Handling, and Shutdown of the Kernel

int fa_startup (int trapflag, char *path);
char *fa_error_msg ();
void fa_shutdown();

Function fa_startup initializes the fragment assembly system and must be the first routine called. If
trapflag is non-zero, fa_startup uses the C Library setjmp/longjmp mechanism to allow control to return to
the point of the call to fa_startup in the event of an error. The first call to fa_startup returns zero but has
the important side effect of establishing itself as the return point for error exceptions. Thereafter, whenever an
error is detected, control is transferred to the call as if it had just returned, but this time with a non-zero value in-
dicating the type of error. In this way error handling is left to the discretion of the user of the kernel. The user

- 1 -

routine that calls fa_startup must not return before invoking other Fragment Assembly Kernel procedures,
otherwise the system may be returning control to a non-existent environment. See the example below and refer
to the C library function setjmp for a description of this mechanism. If fa_startup is called with trapflag
set to zero, then on the detection of an error, an error message is output on stderr and execution terminates. The
path string passed to fa_startup must be the pathname of the directory in which the FAK score table file(s)
(fa*.i) reside. If path is a NULL pointer or an empty string (""), FAK will expect the score table file(s) to be in
the current directory.

Function fa_error_msg returns a pointer to a string containing the error message for the most recently
detected error. The following code fragment is an illustration of the use of the FAK error routines:

int rc;

if (rc = fa_startup(1, ""))
{

fprintf(stderr, "%s", fa_error_msg());
...error handling based on the value of rc...

}
else
{

...calls to other Fragment Assembly Kernel routines...
fa_shutdown();

}

The fa_shutdown procedure frees working memory used by the kernel for overlap computations, minim-
izes the amount of memory allocated for error checking based on the number of extant graph, assembly and con-
straint objects, and removes the file created for pointer checking. This routine may be called at any time to free
memory, and any subsequent calls to FAK routines needing the freed structures will result in their being rebuilt
on a demand basis.

3. Constructing Overlap Graphs

An overlap graph is constructed by using FAK primitives to perform a series of additions and deletions of
fragments and edges between the fragments. Each edge in the overlap graph represents one of two types of
overlap. A containment overlap between two fragments occurs when one fragment sequence is completely con-
tained within the other fragment sequence. An overlap between a suffix of one fragment and a prefix of another
is called a dovetail.

All possible alignments are represented with one of the following edge types:

A --------------
----- B (A contains B)

A -------------- _
----- B (A contains B reverse complement)

B --------------
----- A (B contains A)

_
B --------------

----- A (B reverse complement contains A)

- 2 -

A ---------------
---------------- B (A dovetails to B)

A --------------- _
---------------- B (A dovetails to B reverse complement)

B ---------------
---------------- A (B dovetails to A)

_
B ---------------

---------------- A (B reverse complement dovetails to A)

Note that, for example, (A reverse complement contains B) is not in the list, but it can be represented by (A con-
tains B reverse complement), which is an encoding of the same alignment with the fragments in the opposite
orientation. To simplify the encoding, FAK edge representations always refer to the A fragment in its forward
orientation, and the B fragment may or may not be reverse complemented. This is reflected in the edge types
listed above.

FAK uses an edge edit script to represent each alignment between two fragments. The edit script is an ar-
ray of integers that encodes the alignment. The first integer is FA_SAME if the B fragment is in its forward
orientation, and FA_COMP if the B fragment is reverse complemented. The second and third integers represent
the left and right ends of the overlap as indicies of bases in the fragments. Positive indices are in the A frag-
ment, and negative indices correspond to bases in the B fragment. Positions are numbered from left to right, 1 to
the length of the fragment, and is a fragment is reverse complemented, the numbering is done afterwards. In-
serts and deletes do not count as positions in fragments. If both indices are in the same fragment (i.e. have the
same sign), the edge is a containment, otherwise it is a dovetail. The remaining integers in the script form a list
of insertions and deletions, with a zero at the end of the list. Again, positive integers refer to positions in the A
fragment and negative integers to positions in the (possibly reverse complemented) B fragment. An insert or
delete position is the index of the base that comes after the insert or delete.
As an illustration, the edit scripts for a few example edges are:

i j (i = 5, j = 8)
A gtgcta-gtgatgc edit script: (FA_SAME,5,8,7,0)

taggt B (i * j > 0 => containment)

-i -j (i = -5, j = -8)
B ccgcgat-aggcac edit script: (FA_SAME,-5,-8,2,-8,0)

g-tta A (i * j > 0 => containment)

_ -i (i = -5, j = 10)
B atatgtca-tagtgc edit script: (FA_COMP,-5,10,2,2,-9,0)

g--attagtgccaat A (i * j < 0 => dovetail)
j

In determining significant overlaps, a user-specified error rate is taken into account. The error rate is mul-
tiplied by the sum of the lengths of the two fragments being compared, giving the maximum number of differ-
ences allowed in an overlap that is to be represented in the graph. That is, if the error rate is 5% then a sequence
of length 500 could have 25 errors in it, which implies that when comparing two such sequences up to 50 differ-

- 3 -

ences must be permitted:

|------ up to 25 errors in fragA ------|
1 500

fragA ===========xx====x===xx=x==x=x===xx===x== ... ===
fragB ======xx==xx==xx==x==xxx==x=xx==x ... ==========

1 500
|------ up to 25 errors in fragB ------|

We have always advocated using full-sensitivity sequence comparisons for finding approximate overlaps,
as opposed to heuristics which occasionally miss significant overlaps. Sequencing errors must be accommodat-
ed and while one may not wish to use the more error laden data toward the end of a gel run for the purposes of
multi-alignment and consensus, its use for detecting overlaps can significantly improve closure probabilities for
pure shotgun projects. Using higher error rates for overlap comparisons allows for less trimming of the raw
data. Thus we argue that the further ability of our approach to correctly handle large error rates is an asset.

In order to support version control for fragments, the set of fragments in a graph are partitioned into
classes, each class representing the versions of a given fragment. Only one fragment in a class can be active and
it is this fragment that is used in overlap comparisons and in assemblies. Before generating assemblies over a
graph, the active fragment of a class can be changed, fragments can be added and deleted from a class, and
classes can be added and deleted from the graph. If a user does not intend to support version control, then they
can simply place one fragment in each class.

The following primitives can be used to construct overlap graphs.

FA_GRAPH *fa_create_graph ();
void fa_destroy_graph (FA_GRAPH *graph);

Function fa_create_graph returns a pointer to an empty overlap graph. The routine fa_destroy_graph
frees the memory consumed by an overlap graph.

FA_NAME fa_add_class (FA_GRAPH *graph, char *sequence, int ext_id,
int cmp_type, double error_limit,
double overlap_threshold, double distrib_limit);

void fa_del_class (FA_GRAPH *graph, FA_NAME frag);

FA_NAME fa_add_frag (FA_GRAPH *graph, FA_NAME frag, char *sequence, int ext_id,
int cmp_type, double error_limit,
double overlap_threshold, double distrib_limit);

void fa_del_frag (FA_GRAPH *graph, FA_NAME frag);

void fa_active (FA_GRAPH *graph, FA_NAME frag);

void fa_list_class (FA_GRAPH *graph, FA_NAME frag, void (*handler)());
void handler (FA_NAME fname);

void fa_list_active (FA_GRAPH *graph, void (*handler)());
void handler (FA_NAME fname);

Function fa_add_class establishes a new fragment class whose sole and active member is the supplied
sequence with associated user-supplied id, ext_id. The fragment is assigned a name of type FA_NAME that is
the return value of the call and that must subsequently be used to refer to the fragment in calls to FAK routines.
The remaining parameters control the addition of edges between this new fragment and the active members of
other classes in the graph. If cmp_type is FA_COMPARE_NONE then no edges are added and the remaining
parameters need not be specified. If cmp_type is FA_COMPARE_ALL then the new fragment is compared against
all active fragments. The overlap computation is guaranteed to produce all overlaps within the specified
error_limit and distrib_limit, and those with a score greater than or equal to the overlap_threshold
are added to the overlap graph. The overlap computation may produce some overlaps that are outside of the
error_limit or distrib_limit range; if desired these may be screened out for the purpose of assembly with
the parameters passed to fa_init_assemble. Note that the error_limit, distrib_limit and

- 4 -

overlap_threshold values apply to the overlap comparisons done by fa_add_class, rather than being asso-
ciated with the fragment being added to the overlap graph. When a fragment is added to an overlap graph, these
values are used to determine the edges that are added to the graph. A detailed description of overlap and error-
distribution scores is given below, in the discussion of the fa_compare function.

The fa_del_class procedure removes from the overlap graph all fragments in a class and the edges in-
cident to these fragments.

Function fa_add_frag is identical to fa_add_class except that (1) the supplied fragment sequence is
added to the pre-existing class containing fragment frag, and (2) the parameter cmp_type may be specified as
FA_COMPARE_CLASS. To illustrate the use of the cmp_type parameter, let A be the active fragment in the class.
If cmp_type is FA_COMPARE_CLASS, then the new fragment is compared against the active fragments of the
classes containing fragments to which A has an edge. Just before fa_add_frag returns, the new fragment is
made the active fragment of the class.

The procedure fa_del_frag removes the specified fragment frag from its class and removes any edges
incident to frag from the overlap graph. If frag was the active fragment of the class, then another fragment in
the class is randomly selected to be active.

The routine fa_active makes the specified fragment the active fragment of the class containing it. Re-
call that only one version of a fragment can be active at any given time.

The procedure fa_list_class may be used to list all of the fragments in the class containing fragment
frag. The user writes a handler routine that is passed to fa_list_class. The handler is called once for
each fragment in the class, with the FA_NAME of the fragment passed in as a parameter.

The fa_list_active procedure may be used to list the active fragments in the overlap graph pointed to
by graph. The user writes a handler routine that is passed to fa_list_active. The handler is called once
for each fragment class in the graph, with the FA_NAME of the active fragment of the class passed as a parameter.

In Version 4.0 or later of the FAK kernel, searches against a set of fragments as implied by the use of
FA_COMPARE_ALL in the calls to fa_add_class and/or fa_add_frag, can be significantly accelerated by opt-
ing to use a large index structure in conjunction with some new code. The single instance of this index is allo-
cated by the primitive fa_create_the_index and destroyed with the primitive fa_destroy_the_index
below. The former must be called after fa_startup is called, and the latter before fa_shutdown is called.
While the index is in existence, one can associate it with a given graph, graph, by invoking fa_apply_index
on it. While the association between graph and the index is in effect, all FA_COMPARE_ALL searches over the
current set of active fragments in the graph will be accelerated. One is free to add and delete fragments and
classes, or to change the active fragment in a class, during the time of association: the changes are automatically
reflected in the index.

void fa_create_the_index ();
void fa_destroy_the_index();
void fa_apply_index (FA_GRAPH *graph);

The efficiency of the overlap computation is primarily related to the error rate specified when fragments
are added to the graph. Lower error rates will allow a more efficient overlap computation. The most efficient
overlap computation is possible when the error rate is low, say less than 5%. A somewhat lower efficiency
results at or above each of the 5%, and 10% error rate levels. Refer to the section on Building and Using the
Fragment Assembly Kernel for more details regarding efficiency and index memory requirements.

To examine the results of an overlap comparison between two fragments, fa_compare may be used.

int *fa_compare (FA_GRAPH *graph, FA_NAME frag1, FA_NAME frag2,
double error_limit, double *score, double *distrib_limit,
int orient, int coord1, int coord2);

Function fa_compare returns a pointer to a list of integers representing an optimal overlap alignment between
frag1 and frag2. The overlap is computed using the specified error rate and any non-zero values in the
orient and coord1, coord2 parameters. Passing non-zero values for orient, coord1 and coord2 specifies
a more restricted set of comparisons, as explained below. In fa_compare the highest scoring overlap (con-
sistent with orient, coord1, and coord2 values, if any) is determined, and the overlap score and error-
distribution score are returned via the pointers score and distrib_limit, respectively. If no such overlap is
found, fa_compare returns NULL.

- 5 -

The overlap score of an alignment roughly reflects the length of the overlap with a deduction for
mismatches in the alignment. The score is computed as − log 4 of the probability that such an alignment would
occur at random. This is a prior odds ratio, i.e. it does not take into account the total number of comparisons
made in building a particular overlap graph. By taking the − log 4 of the probability, scores are scaled so that a
perfect alignment of length L, has score L, and an alignment with D errors in it scores approximately
L − Dlog 4 L/(D +1) when D/L is sufficiently small. That is, the score is the length of the overlap less a factor
multiplied by the number of differences, where the factor becomes smaller as the number of difference becomes
larger. We find that choosing a cutoff score of around 10 (1 in a million) is generally satisfactory.

The error-distribution score of an alignment provides another useful and orthogonal measure of the quality
of an overlap. It is based on the Erlang approximation of the probability of seeing the number of differences in
the alignment given that errors are distributed exponentially with arrival rate 1/error_limit. The need for
this additional measure is motivated by the following example. Function fa_compare will find all overlaps in-
volving up to error_limit*(length(frag1)+length(frag2)) differences. So one might find an overlap
of 200 symbols between two fragments of length 500 with 100 differences when the error rate is set at 10%.
The overlap score in this case is still well over 10 as such an alignment is very rare. But if the 10% errors were
distributed exponentially we would on average see only 40 errors in an overlap of 200 symbols, and would see
100 errors in this overlap only 1 in a 1000 times. Thus the Erlang-based error-distribution score reveals such an
alignment to be suspect. Another common phenomenon is for a significant overlap (with respect to overlap
score) to occur in the case of a chimeric fragment or two fragments that both contain part of a repeated sequence
in the original DNA strand. In these cases one has a very good alignment, distributionally speaking, for a prefix
or suffix of the overlap followed by a very poor alignment thereafter. We capture this by computing the distri-
butional score of every suffix and prefix of an alignment and taking the minimum score over all. This number is
the distributional score returned by fa_compare. When passed as a parameter to the fa_add routines, a typical
distrib_limit threshold is about .001. An error-distribution limit of .01 tends to eliminate some good align-
ments, and .0001 tends to retain potentially bad ones. Note that using 0.0 guarantees that no edges are elim-
inated on this basis, and using 1.0 is non-sensical as it will guarantee that all overlaps are rejected.

If the fragments are to be compared in both the same and reverse complement orientations, the orient
parameter should have a zero value. If one wishes to specify the relative orientation of the fragments con-
sidered, the parameter orient is used as follows: Setting orient to FA_SAME specifies that frag1 and frag2
are to be compared in the same orientation. If orient is FA_COMP, then frag1 is compared to the reverse com-
plement of frag2. If the orientation constraint is given and the last two arguments have a zero value then the
best overlap between the fragments in the given orientation is returned.

Finally, if the best alignment subject to a given orientation and overlap interval is desired, then one may
further specify the interval with the parameters coord1 and coord2. These parameters specify the beginning
and ending positions of the overlap interval. Positive values represent positions in frag1, and negative values
indicate positions in frag2. If the product of the values for coord1 and coord2 is positive, a containment
overlap is indicated; if this product is negative, it represents a dovetail overlap. For example, if frag1 is 110
characters long and frag2 is 60 characters long, then the (orient, coord1, coord2) triples at left give rise to
the overlaps at right:

(FA_SAME,100,-10) <==> frag1[100..110] dovetails frag2[1..10]
(FA_SAME, 20, 85) <==> frag1[20.. 85] contains frag2
(FA_SAME,-45, 20) <==> frag2[45.. 60] dovetails frag1[1..20]
(FA_SAME, -1,-60) <==> frag2 contains frag1 (with lots of errors)
(FA_COMP,100,-10) <==> frag1[100..110] dovetails FRAG2[1..10]
(FA_COMP, 20, 85) <==> frag1[20.. 85] contains FRAG2

where FRAG2 is the reverse complement sequence of frag2

Notice that FRAG2[1..10] is the reverse complement of frag2[51..60]. Also notice that the overlaps may
contain errors. For example, the first triple above implies that the last 11 characters of frag1 overlap with the
first 10 characters of frag2, so there must also be an insert in frag2 in order for it to align with frag1.

The list of integers returned by fa_compare represents the alignment as follows: The first three integers
indicate the orientation and overlap interval, exactly as do the parameters to fa_compare. That is, the first in-
teger in the list is FA_SAME or FA_COMP, indicating whether or not frag2 is reverse-complemented. The second
and third integers indicate the beginning and ending positions of the overlap interval as described above. The
remaining integers in the list indicate the positions at which to insert dashes into the two sequences so as to pro-

- 6 -

duce the encoded alignment. Specifically, a positive integer, k, indicates that a dash should be inserted before
the k’th symbol of frag1, and a negative integer, −k, indicates that a dash should be inserted before the k’th
symbol of frag2. The list is terminated with a 0. For example, if frag1 = ’acggtacgttacgatacg’ and
frag2 = ’gtaaacttaagaacgtaa’, then the alignment:

acggt--acgttacgatacg
gtaaac-ttaaga-acgtaa

is specified by the list <FA_SAME,4,−15,6,6,−7,−13,0>.

The following FAK routines may be used to add and delete edges from an overlap graph manually, and to
inspect the edges in a graph:

void fa_add_edge (FA_GRAPH *graph, FA_NAME frag1, FA_NAME frag2,
int *alignment, double o_score, double ed_score);

void fa_del_edge (FA_GRAPH *graph, FA_NAME frag1, FA_NAME frag2,
int orient, int coord1, int coord2);

void fa_list_edges (FA_GRAPH *graph, FA_NAME frag, void (*handler)());
void handler (FA_NAME fname1, FA_NAME fname2,

int *alignment, double o_score, double ed_score);

The procedure fa_add_edge adds an edge from frag1 to frag2, using the specified alignment and
overlap and error-distribution scores, to an overlap graph. The alignment is represented by a list of integers such
as those returned by fa_compare. The edge is assigned the designated scores for the purposes of computing
best layouts. These may be the scores returned by fa_compare or whatever the user desires (e.g. the length of
the overlap for o_score).

The fa_del_edge routine removes from an overlap graph all edges between frag1 and frag2 with the
specified orientation (FA_SAME or FA_COMP) and overlap interval (coord1 and coord2 as described for
fa_compare). That is, the edge is identified by the first three integers in the list of integers encoding it. If there
is more than one edge between frag1 and frag2 satisfying the description (but possibly differing in the exact
alignment between the overlapped intervals), they all are removed.

The routine fa_list_edges can be used to obtain information about all edges incident to the specified
fragment in an overlap graph. The user writes a handler routine that is passed to fa_list_edges. The
handler routine is called once for each edge incident to the specified fragment, and is passed the FA_NAMEs of
the overlapping fragments represented by the edge, a pointer to the integer list encoding of the alignment (as
described for fa_compare), and the overlap and error-distribution scores of the edge. The handler routine
can then use this information as desired by the user. The value of either fname1 or fname2 passed to the
handler is the value frag passed to fa_list_edges. The handler must expect a score of type double, to allow
us to accomodate pre-ANSI C compilers.

char *fa_sequence (FA_GRAPH *graph, FA_NAME name);
int fa_length (FA_GRAPH *graph, FA_NAME name);
int fa_ext_id (FA_GRAPH *graph, FA_NAME name);

Function fa_sequence returns a pointer to the character string for the sequence in the overlap graph with
the associated name, or the null pointer, if no such sequence exists.

Function fa_length returns the length of the named sequence, or 0 if there is no such sequence.

Function fa_ext_id returns the integer id supplied by the developer when the specified sequence was in-
serted into the overlap graph. If there is no such sequence, fa_ext_id returns 0.

void fa_write_graph (FA_GRAPH *graph, FILE *stream);
FA_GRAPH *fa_read_graph (FILE *stream);
void fa_ascii_write_graph (FA_GRAPH *graph, FILE *stream);
FA_GRAPH *fa_ascii_read_graph (FILE *stream);

Procedure fa_write_graph stores an overlap graph in a file. The specified file must be opened for writ-

- 7 -

ing when fa_write_graph is called. Function fa_read_graph reads a previously stored overlap graph from
a file that has been opened for reading. The fa_read_graph and fa_write_graph routines make use of the C
library buffered I/O functions fread and fwrite. If calls to FAK read/write routines are intermixed with input or
output of other data, these other reads and writes must also use the buffered I/O functions. That is, calls to the
system read/write functions cannot be intermixed with calls to the C library fread/fwrite routines.

Procedure fa_ascii_write_graph stores an ASCII representation of an overlap graph in a file. The
specified file must be opened for writing when fa_ascii_write_graph is called. The first line of the ASCII
graph file has the format "G(verification code): internal graph structure values". The first two values are the
number of classes and the number of fragments in the graph. Next the ASCII representation of each fragment is
given as "F: internal fragment structure values" and "S: fragment sequence, 60 characters per line". Class active
fragment values and nameindex values follow the fragment data. Finally, for each edge in the graph there is
data in the format "E: internal edge structure values including edge overlap score and error-distribution score"
and "D: orientation overlap-coordinates" followed by any remaining edit script values (insert positions), 10 per
line". Refer to the description of alignment representation in fa_compare. Function fa_ascii_read_graph
reads a previously stored ASCII representation of an overlap graph from a file that has been opened for reading
and returns a pointer to the graph.

4. Fragment Assembly Constraints

An additional capability provided by our Fragment Assembly Kernel allows the user to provide more in-
formation to the kernel regarding fragment assembly. Constraints can be used to specify that given fragments or
edges in an overlap graph are used in an assembly in a particular way, or are not included in an assembly.

The inclusion of fragment assembly constraints in the kernel was motivated by the use of mixed-mode
sequencing strategies. Previously we had developed an approach for the layout phase that was suitable for pure
shotgun sequencing projects [Kec91]. This approach is based on operations research techniques for finding a
maximum weight Hamiltonian path through the overlap graph of the first phase. Since that time, it has become
clear that large sequencing projects will not and cannot employ a pure shotgun strategy. Most experimentalists
advocate shotgunning to the point of marginal return and then resorting to primer-based or directed methods for
achieving completion or closure. Others advocate approaches involving sequencing only those fragments that
do not hybridize (overlap) with other sequenced fragments, or sequencing both ends of an insert, all in an at-
tempt to improve on the coverage of pure shotgunning. The impact of these mixed-mode sequencing strategies
is that one must now produce the most compact layout subject to a collection of constraints modeling the addi-
tional information provided by the enhanced strategy.

Given that the simple and heuristic greedy algorithm [Sta82,PSU84,Hua92] for producing layouts tends to
work well in most cases, and in light of the additional complexity of constraints, we have chosen in our new ker-
nel to utilize a greedy algorithm that will produce solutions that meet the given constraints. Like the basic
greedy algorithm, fragments are progressively melded together, where melds are chosen in order of the "degree"
of overlap between fragments. But in addition the algorithm rejects a potential meld if it violates a constraint.

The following functions can be used to build constraint sets:

FA_CSET *fac_all_frags();

FA_CSET *fac_frag_in (FA_NAME frag);
FA_CSET *fac_frag_out(FA_NAME frag);

FA_CSET *fac_edge_in (FA_NAME frag1, FA_NAME frag2,
int orient, int coord1, int coord2);

FA_CSET *fac_edge_out(FA_NAME frag1, FA_NAME frag2,
int orient, int coord1, int coord2);

FA_CSET *fac_orient_same(FA_NAME frag1, FA_NAME frag2);
FA_CSET *fac_orient_opp (FA_NAME frag1, FA_NAME frag2);

FA_CSET *fac_distance(FA_NAME frag1, FA_NAME frag2, int anchor1,
int anchor2, int mingap, int maxgap);

Each of the above constraint functions returns a reference to a constraint set containing a single constraint.

- 8 -

Constraint sets consisting of more than one constraint can be built using the function fac_union which is
described below. Fragment constraints have the highest priority, followed by edge constraints, orientation con-
straints, and finally distance constraints. Therefore, if a fragment is constrained to be out of an assembly, and an
edge involving that fragment is constrained to be in the assembly, the edge constraint is considered to be incon-
sistent with the higher priority fragment constraint. Note that it is also possible for inconsistent constraint sets to
be created by taking the union of conflicting constraints of the same priority. For example, constraining the
same edge to be both in and out of an assembly or the same two fragments to be oriented in both the same and
opposite directions are inconsistencies. If an inconsistency is detected in fa_init_assemble, a user defined
warning handler will be called, and the assembly will proceed without using the most recently added constraint
which caused the inconsistency to be discovered. Also note that when a constraint is created or evaluated by
another FAK function, references to fragments are to the active member of the class containing it.

For certain types of edge IN constraints, it is necessary to include containing edges and transitive edges in
the constraint so that they are assembled properly. Each edge IN constraint is now "expanded" to include con-
sistent related edges. In any constraint conflicts involving the expanded constraints, both the original and the in-
cluded constraints are reported. The ability to correctly expand constraints depends on the use of an appropriate
error limit with fa_add_class/frag and suitable values of asm_error_rate and asm_distrib_thresh being passed to
fa_init_assemble(). If, for example, the error limit or asm_error_rate is too low, edges needed for constraint ex-
pansion will not be found and constraint conflict errors will be reported.

Function fac_all_frags returns a reference to a constraint set that asserts that all active fragments are
to be considered in the assembly. If two constraint sets are merged using the fac_union function and either set
contains the "fac_all_frags" constraint, the resulting constraint set will assert that all fragments, except those
referenced in "fac_frag_out" constraints in the merged set, will be considered in the assembly.

A constraint set built by fac_frag_in asserts that the specified fragment is to be among those assembled.
Function fac_frag_out creates a constraint set that asserts that the specified fragment is not included in the as-
sembly. Thus one may specify a set of fragments to be assembled either by listing which ones are in, or by list-
ing which ones are out. In the first case, one builds a constraint set of "fac_frag_in"s, and in the latter case
one builds a constraint set of "fac_all_frags" and "fac_frag_out"s.

Function fac_edge_in returns a reference to a constraint set that asserts that one of the edges (if any)
between frag1 and frag2 meeting the the orientation and overlap conditions imposed by orient, coord1,
and coord2 will be used to overlap the fragments in the resulting assembly. The orient, coord1, and coord2
parameters optionally specify the relative orientation and the overlap of the edges to be considered. As in
fa_compare, one may use a zero value for all three of these parameters, specify a non-zero value for just the
orientation, or pass non-zero values for all three parameters, in each case specifying a progressively more res-
tricted set of edges to consider.

Function fac_edge_out returns a pointer to a constraint set that asserts that all edges between frag1
and frag2 satisfying the orientation and overlap conditions (if in effect), will be disregarded while building as-
semblies over the graph associated with this constraint set.

Function fac_orient_same creates a constraint set that asserts that the two fragments specified will be
in the same orientation in the resulting assembly.

A constraint set created by fac_orient_opp asserts that the two fragments specified will be in the oppo-
site (or reverse complement) orientation in the resulting assembly.

Function fac_distance returns a reference to a constraint set that asserts that position anchor1 with
respect to frag1 and position anchor2 with respect to frag2 are to be separated by at least mingap characters
and at most maxgap characters in the resulting assembly. The fragments may be in either orientation with
respect to their anchors and the anchors do not necessarily have to be positions in the fragment, e.g. an anchor
value of −10 specifies a position 10 characters to the left of the first character of the relevant fragment.

FA_CSET *fac_union(FA_CSET *cset1, FA_CSET *cset2);
FA_CSET *fac_copy(FA_CSET *cset);
void fac_destroy(FA_CSET *cset);

Function fac_union returns a reference to the constraint set that results from merging two specified con-
straint sets. Merging constraint sets consumes the references to cset1 and cset2. To retain a reference to ei-
ther of these constraint sets, fac_copy must be called on the reference.

- 9 -

Function fac_copy creates a new reference to a constraint set and returns the newly created reference.
Procedure fac_destroy consumes a reference to a constraint set and frees the memory associated with the
constraint set if this was the last reference to the object.

As implied by the naming of pointers to constraint sets as references, a reference counter mechanism is
used to manipulate constraint sets. We have found that the conventions described above are very flexible and
are best illustrated with an example.

FA_CSET *cf, *ce, *ca;
FA_NAME f1, f2, f3, f[n+1];

cf = fac_all_frags();
for (i = 1; i <= n; i++)
cf = fac_union(cf,fac_frag_out(f[i]);

ce = fac_union(fac_union(fac_edge_in(f1,f2),
fac_edge_in(f1,f3)),
fac_edge_in(f2,f3));

ca = fac_union(cf,ce);
fac_destroy(ca);

cf becomes a reference to a constraint set specifying that all fragments except f[1..n] should be assembled.
Within the loop, fac_union consumes the reference to cf and that returned by fac_frag_out and returns a
new one to an object modeling their union. Later, when fac_destroy is called on ca, all the objects created
are destroyed. If instead one had set "ca = fac_union(fac_copy(cf),ce)", then after the code is execut-
ed, cf will still be a valid reference, but all constraints associated with ca and ce will have disappeared.

>From another point of view, the fundamental constraint set primitives and fac_union return pointers to
objects whose reference count is 1. Moreover, fac_union does not modify the reference counts of its operands
but since it needs to point at them, it effectively consumes one of the counts. fac_copy increments the refer-
ence count. fac_destroy decrements the reference count and if it becomes zero, recursively garbage collects
all objects that become unreferenced as a result.

void fac_write(FA_CSET *cset, FILE *stream);
FA_CSET *fac_read(FILE *stream);
void fac_ascii_write(FA_CSET *cset, FILE *stream);
FA_CSET *fac_ascii_read(FILE *stream);

Procedure fac_write writes a constraint set to a file. The file must be open for writing. Function
fac_read returns a reference to a constraint set read from a file. The file must be open for reading.

Procedure fac_ascii_write writes an ASCII representation of a constraint set to a file. The file must be
open for writing. The first line of the ASCII constraint set file has the format "C(verification code): allfragin
flag". Each constraint type is listed and the number of constraints of that type is given, followed by a list of the
actual constraints. FA_NAMEs of fragments specified in fragment constraints are listed 10 per line. Edge con-
straints are listed one per line, including the FA_NAMEs of the fragments in the edge, their relative orientation
if specified in the constraint, and overlap coordinates if specified. Orientation constraints are listed one per line,
consisting of two FA_NAMEs and the relative orientation in the constraint. Distance constraints are written one
per line, as two FA_NAMEs, two anchor positions, and the mingap and maxgap values. Function
fac_ascii_read returns a reference to a constraint set read from an ASCII constraint set file. The file must be
open for reading.

5. Generating Assemblies

The FAK assembly generator includes the layout phase and the multi-alignment phase. The layout phase
uses a greedy algorithm that respects any specified constraints, as described above. For the multi-alignment
phase, we proceed by producing an initial alignment consistent with all the pairwise alignments of the edges in
the layout of the previous phase. This is always possible, computationally efficient, and since the error rate is
typically less than 10% produces a very good first approximation. As an improvement, a "window" is swept
over this initial alignment to optimize the alignment in subregions where the use of global overlap alignments
produced locally nonoptimal subalignments. Within the window, the alignment is again the result of merging
pairwise alignments, but in this case, in a potentially different order according to the best pairwise alignments

- 10 -

between the subsequences within the window. With this window-sweep we empirically find the resulting
multi-alignment to be almost-everywhere optimal, especially when the error rate is less than 5%. Most com-
plaints about current fragment assembly software are due to suboptimal results in the overlap and multi-
alignment phases. We thus believe it is imperative to use the best possible alignment algorithms in these phases.

The following functions can be used to generate assemblies from an overlap graph:

void fa_init_assemble (FA_GRAPH *graph, FA_CSET *cset, void (*handler()),
double asm_ov_thresh, double asm_error_rate,
double asm_distrib_thresh);

void handler (int errcode, char *warn_str);

FA_ASSEMBLY *fa_gen_assembly (FA_GRAPH *graph);
void fa_destroy_assembly(FA_ASSEMBLY *asm);

void fa_finis_assemble (FA_GRAPH *graph);

Procedure fa_init_assemble prepares for the computation of assemblies over a subset of edges from an over-
lap graph, using a constraint set.

In some situations it may be useful to specify a lower overlap threshold, higher error limit, and lower
error-distribution limit when adding fragments to an overlap graph, then vary the stringency of these values
when generating assemblies. This strategy has the effect of being generous in terms of including overlaps in the
graph, then being more selective at the assembly stage. Since the overlap computation takes more time than
generating the assemblies, it may be convenient to include all possibly useful overlaps in the overlap graph, then
"turn the knobs" later to cull out the desired subset of edges.

The subset of edges to be considered in assemblies is determined by cset and by the values of the
asm_ov_thresh, asm_error_rate, and asm_distrib_thresh parameters. If asm_ov_thresh is greater
than 0.0, only those edges with an overlap score greater than or equal to asm_ov_thresh will be considered in
assemblies (unless the edges have been constrained to be IN). If asm_distrib_thresh is greater than 0.0,
then for each edge with a sufficient overlap score, an error-distribution score is computed based on
asm_error_rate. If this error-distribution score is less than asm_distrib_thresh, the edge will be exclud-
ed from any assemblies. If asm_ov_thresh is less than or equal to 0.0, all edges in the overlap graph are eligi-
ble for assembly (except any edges constrained OUT). If asm_distrib_thresh is less than or equal to 0.0, no
assembly error-distribution screening is done.

A call to fa_init_assemble also associates a user defined warning message handler with the graph.
The warning handler is called by FAK procedures operating on a graph whenever an error is encountered that
can be safely ignored. For example, if inconsistencies in a constraint set are detected, the warning handler is
called, and if control is returned to the Fragment Assembly Kernel, the offending constraint is ignored and the
assembly process continues. If a NULL pointer is passed as the warning handler, the warning message will be
sent to stderr, and the assembly process will continue.

The fa_init_assemble routine must be called before the first call to fa_gen_assembly. The graph is
locked by fa_init_assemble, and remains locked until fa_finis_assemble is called. Locking prevents
any changes to the graph (such as addition or deletion of fragments or edges, or changing the active fragment of
a class) while assembly generation is in progress. Modifications to the constraint set associated with a graph are
effectively ignored while the graph is locked, since constraint set evaluation takes place only when the constraint
set gets associated with the graph in fa_init_assemble. Passing a locked graph to fa_init_assemble,
fa_write_graph, or any FAK routine that modifies a graph causes an error trap as described at the start of the
document.

Function fa_gen_assembly generates the next best fragment assembly over a graph, using the constraint
set specified in the call to fa_init_assemble. A pointer to an object of type FA_ASSEMBLY is returned, or the
null pointer if there is no next best assembly. The same constraint set is used for each assembly; to use a dif-
ferent constraint set, fa_finis_assemble must be called, followed by a call to fa_init_assemble with the
new constraint set. If fa_gen_assembly is called on a graph that has not had assembly initialized via a call to
fa_init_assemble, the error is handled as described in the Initialization and Error Handling section.

- 11 -

Procedure fa_destroy_assembly frees the data structures associated with an assembly.

Procedure fa_finis_assemble terminates assembly generation over a graph, frees the associated data
structures, and disassociates the constraint set specified in the call to fa_init_assemble from the graph.

6. Accessing information about assemblies

int fa_num_contigs(FA_ASSEMBLY *asm);
int fa_contig_height(FA_ASSEMBLY *asm, int ctg);
int fa_contig_width(FA_ASSEMBLY *asm, int ctg);
double fa_contig_score(FA_ASSEMBLY *asm, int ctg);

int fa_contig_view(FA_ASSEMBLY *asm, int ctg, int beg_col, int end_col,
int consensus, void (*handler)());

void handler(int row, int col, int frag, int len, int pos);

int fa_num_fragments(FA_ASSEMBLY *asm, int ctg);
FA_NAME fa_frag_id(FA_ASSEMBLY *asm, int ctg, int frag);
void fa_frag_loc(FA_ASSEMBLY *asm, int ctg, int frag,

int *row, int *bcol, int *ecol);
char *fa_frag_eseq(FA_ASSEMBLY *asm, int ctg, int frag);
int fa_frag_overlap(FA_ASSEMBLY *asm, int ctg, int frag);
int fa_frag_orient(FA_ASSEMBLY *asm, int ctg, int frag);

FA_CSET *fa_assembly_seed(FA_ASSEMBLY *asm);

Function fa_num_contigs returns the number of contigs in an assembly. The remaining assembly infor-
mation routines require a contig index as an input parameter. This index provides the user a means to iterate
through the contigs in an assembly. Contigs are indexed from zero to the number of contigs - 1.

Function fa_contig_height returns the number of rows needed to display an assembly contig.

Function fa_contig_width returns the length in characters of an assembly contig.

Function fa_contig_score returns the score of an assembly contig.

Function fa_contig_view produces the portion of an assembly contig that is delineated by beg_col
and end_col, and calls a user-supplied routine, handler, once for each fragment that lies within this window.
If the consensus argument is non-zero, a consensus row will be computed and passed to the handler routine
after the last fragment in the window. The fa_contig_view function returns a non-zero result if no errors oc-
cur while producing the contig rows. If an error is detected, such as a column number out of range,
fa_contig_view returns zero. The handler routine must accept arguments specifying the row being passed,
the column of the multi-alignment in which the fragment begins, the index of the fragment in the contig (or −1 if
the consensus row is being passed in), the length in characters of the portion of the fragment in the window (in-
cluding dashes), and the first column position of the fragment that is within the window. Note that more than
one fragment can occupy the same row, in which case the handler is called more than once with the same row
number. Also, beg_col can specify a column before the start of a particular fragment, so that the correspond-
ing value of pos passed to the handler is 1, or beg_col can intersect a fragment so that pos represents the
column position of the intersection point. Fragments within a contig are indexed from zero to the number of
fragments - 1. For example, if fa_contig_view is called on the following 3-fragment contig with beg_col 9 and
end_col 36,

beg_col end_col
|___________________________|
| |

fragA ccgcg-tatatga-gctcgaaagctagtaaccag-gagccggc
fragB ggtata--acgctcga fragC cc-gagagc-ggctaacttagg

| |
|_________ window __________|

- 12 -

then handler will be called 3 times:

handler(1, 9, 0, 28, 9); for row 1, col 9, fragA, len 28, pos 9
handler(2, 9, 1, 12, 5); for row 2, col 9, fragB, len 12, pos 5
handler(2, 31, 2, 6, 1); for row 2, col 31, fragC, len 6, pos 1

Function fa_num_fragments returns the number of fragments in an assembly contig. As with contigs, it
is assumed that the user will look through the fragments by iterating a fragment index from zero to the number
of fragments - 1 and passing this index to FAK functions.

Function fa_frag_id returns the FA_NAME for the fragment with index frag in the assembly contig in-
dexed by ctg. Procedure fa_frag_loc passes back the row, *row, and beginning and ending column posi-
tions, *bcol and *ecol, of the fragment indexed by frag in the assembly contig indexed by ctg.

Function fa_frag_eseq returns a pointer to a character buffer containing the aligned sequence for the
fragment with index frag in the assembly contig indexed by ctg, or if frag is −1, the consensus sequence is
returned. The aligned sequence for a fragment is the sequence of characters (including dashes) representing the
fragment in the multi-alignment. The buffer containing the aligned sequence is overwritten each time
fa_frag_eseq is called. Function fa_frag_overlap returns FA_CONTAIN, FA_DOVETAIL, or 0 to indicate
whether the fragment indexed by frag in assembly contig ctg is contained in another fragment, dovetailed with
another fragment, or is the root (first fragment) of the contig. Function fa_frag_orient returns 1 if the frag-
ment indexed by frag in the assembly contig with index ctg is reverse-complemented, 0 otherwise.

Function fa_assembly_seed returns a reference to a constraint set that contains a "fac_edge_in" con-
straint for the seed edge used to generate the assembly. The seed edge selected for an assembly is the highest
scoring edge that is not constrained (by a "fac_edge_in" constraint) to be in the assemblies, and that has not
yet been included in a previously generated assembly over the relevant graph. This selection of the seed edge is
intended to give rise to alternate assemblies.

The seed edge can be used to regenerate its assembly without having to produce any of the preceding as-
semblies. For example, suppose that 10 assemblies have been generated over graph1 with associated constraint
set cset1. If the seed for assembly number 10 has been saved, then this assembly can be reproduced after all of
the assemblies have been destroyed and fa_finis_assemble has been called as follows:

FA_GRAPH *graph1;
FA_CSET *cset1, *seed_10;
FA_ASSEMBLY *asmb;

cset1 = fac_union(cset1, seed_10);
fa_init_assemble(graph1, cset1);
asmb = fa_gen_assembly(graph1);

This approach saves the time required to generate the first 9 assemblies. Note that if the function
fa_assembly_seed is called with asmb, the seed returned will not be the same as seed_10, since seed_10
was added to cset1 which prevents it from being selected as a seed.

void fa_write_assembly(FA_ASSEMBLY *asm, FILE *stream);
FA_ASSEMBLY *fa_read_assembly(FA_GRAPH *graph, FILE *stream);
void fa_ascii_write_assembly(FA_ASSEMBLY *asm, FILE *stream);
FA_ASSEMBLY *fa_ascii_read_assembly(FA_GRAPH *graph, FILE *stream);

Procedure fa_write_assembly writes an assembly to a file. The file must be open for writing, and the
graph from which the assembly was generated must be saved independently by calling fa_write_graph.
Function fa_read_assembly reads an assembly in terms of an existing graph. The file from which the assem-
bly is to be read must be open for reading.

Procedure fa_ascii_write_assembly stores an ASCII representation of an assembly in a file. The
specified file must be opened for writing before fa_ascii_write_assembly is called. The graph from which
the assembly was generated must be saved independently by calling fa_ascii_write_graph. The first line of
the ASCII assembly file has the format "A(verification code): number of contigs in assembly". The second line
contains the assembly seed edge representation. The assembly representation is divided into three groups. In

- 13 -

the first group, for each contig in the assembly the number of fragments, rows, columns, score, and edit informa-
tion is given. For each fragment in the contig, layout information is stored. The consensus for the contig is writ-
ten to the file, followed by internal consensus and layout information. The second group lists internal informa-
tion for fragments in each row of each contig, and the third group contains more internal layout and edit infor-
mation. Function fa_ascii_read_assembly reads a previously stored ASCII representation of an assembly
from a file that has been opened for reading and returns a pointer to the assembly. The graph from which the as-
sembly was generated must be extant when fa_ascii_read_assembly is called.

7. Editing multi-alignments

void fa_swap_rows(FA_ASSEMBLY *asm, int ctg, int row1, int row2);
char *fa_get_col(FA_ASSEMBLY *asm, int ctg, int col);
void fa_delete_col(FA_ASSEMBLY *asm, int ctg, int col);
void fa_insert_col(FA_ASSEMBLY *asm, int ctg, int col, char *seq);
void fa_substitute_col(FA_ASSEMBLY *asm, int ctg, int col, char *seq);
void fa_undo_edit(FA_ASSEMBLY *asm, int ctg);

The multi-alignment edit functions operate on the assembly asm, in the contig indexed by ctg. Procedure
fa_swap_rows swaps row1 and row2.

Procedure fa_get_col returns a null-terminated string containing the symbols from column col. The
string is overwritten each time fa_get_col is called.

Procedure fa_delete_col deletes the column specified by col.

Procedure fa_insert_col inserts the column of characters specified by the null-terminated string seq
before column col. The length of the string seq must be the same as the number of rows in the contig. Valid
characters for seq include dashes and characters representing an encoded nucleotide set.

Procedure fa_substitute_col replaces the the specified column in the multi-alignment with the
column passed in via seq. The seq string must be NULL-terminated, and must be equal in length to the number
of rows in the contig indexed by ctg, which is returned by the fa_contig_height function.

Procedure fa_undo_edit reverses the last edit made to the assembly contig.

As an illustration of the use of the editing functions, consider the multi-alignment from contig 0 of assem-
bly asmb:

fragA: ggctaccgc-ctac
fragB: accgcggta-gga
fragC: g-tacggaaca

Consensus: GGCTACGGCG?TACGGAACA

The consensus column 11 could not be determined from the given fragment sequences. If the user determines
that the seventh base in FragB is actually a ’c’ rather than a ’g’, the following FAK calls can be used to correct
the multi-alignment:

fa_delete_col(asmb, 0, 11);
fa_insert_col(asmb, 0, 11, "cc-");

8. Building and Using the Fragment Assembly Kernel

The Fragment Assembly Kernel package is comprised of several C source and header files, and an accom-
panying Makefile. The Unix "make" command can be used to build the FAK source files into a library that can
be linked with a user program. The user program must contain the directive ’#include "fa_interface.h"’. The
files "fa_interface.h" and "fa_errors.h" must be accessible through the include path for the user program, or may
simply be placed in the directory in which the user program resides.

In addition, the Fragment Assembly Kernel uses a score table file that contains very large tables. The file
is named with a ".i" extension, and by default has been built for the Sun4 platform. For other architectures, the
"make all" command can be used to regenerate the FAK score table file. This file may be installed in any direc-
tory, provided that the pathname of this directory is passed to fa_startup. To avoid hardcoding this pathname

- 14 -

into the user program, the standard C library routine getenv can be used to check an environment variable that
can be set to the pathname. If the path parameter passed to fa_startup is a NULL pointer or an empty
string(""), the Fragment Assembly Kernel will attempt to find the FAK score table file in the current directory.

The maximum length of fragments assembled by FAK is dependent on the constant LENMAX, defined in
the file fa_global.h. If the error FA_ERR_SCORE_OVERFLOW occurs (or the message "Error: score table
limits exceeded" appears), LENMAX should be increased, and the score table rebuilt by using the "make all"
command. The value of LENMAX should be approximately 1.6 times the length of the longest fragment to be
assembled by FAK. If LENMAX is made larger, the constant DIFFMAX may also need to be increased. DIFF-
MAX must be greater than or equal to 2 * max_error_limit * LENMAX, where max_error_limit is the max-
imum error rate for overlaps.

The speed of overlap computations is affected by the size of the index structure created. This size is
determined by the defined constant OVTUPLE. The memory requirement for the index is sizeof(int) * pow(4,
OVTUPLE). In other words, each time OVTUPLE is increased by 1, the memory requirement grows by a factor
of 4. For example, if OVTUPLE is 10 and the size of an integer is 4 bytes, the index uses 4Mb of memory. For
a given value of OVTUPLE, the fastest overlap computation will result when the error rate is less than
0.5/OVTUPLE. The second most efficient overlap computation will occur with error rates between 0.5/OVTU-
PLE and 1.0/OVTUPLE. Higher error rates may be specified, which will increase the time required to compute
the overlaps.

9. Conclusion

We have produced a fragment assembly tool that is flexible and robust, yet efficient. FAK users may
choose between completely automatic assembly and a high degree of user control. Our Fragment Assembly
Kernel consists of what we feel is the simplest possible set of atomic yet sufficient primitives to support proven
methods of fragment assembly as well as new sequencing techniques.

In our implementation we have strictly maintained the objected-oriented paradigm: the kernel realizes ob-
jects of type overlap graph, constraint set, and assembly that may be created, destroyed, and manipulated only
via routines of the kernel. An object persists until it is explicitly destroyed.

The kernel developed actually represents the Arizona group’s second such construction effort
[Kec91,MiM91,KeM93]. This second effort started from scratch with a complete redesign of the underlying al-
gorithms and interface.

10. References

[Hua92] Huang, X. "A contig assembly program based on sensitive detection of fragment overlaps".
Genomics 14 (1992), 18-25.

[Kec91] Kececioglu, J.D. "Exact and approximate algorithms for DNA sequence reconstruction". Ph.D.
Thesis. Technical Report 91-26, Dept. of Computer Science, U. of Arizona, Tucson, AZ 85721.

[KeM93] Kececioglu, J.D. and E.W. Myers. "Combinatorial algorithms for DNA sequence assembly". Ac-
cepted for publication in Algorithmica (1993).

[MiM91] Miller, S. and E.W. Myers. "A fragment assembly project environment". Technical Report 91-17,
Dept. of Computer Science, U. of Arizona, Tucson, AZ 85721.

[PSU84] Peltola, H., H. So"derlund, and E. Ukkonen. "SEQAID: A DNA sequence assembly program based
on a mathematical model". Nuc. Acids Res. 12 (1984), 307-321.

[Sta82] Staden, R. "Automation of the computer handling of gel reading data produced by the shotgun
method of DNA sequence". Nuc. Acids Res. 10 (1982), 4731-4751.

- 15 -

