
��

A System for Pattern Matching
Applications on Biosequences†

Gerhard Mehldau and Gene Myers*
��

Abstract

ANREP is a system for finding matches to patterns composed of (1) spacing constraints called
‘‘spacers’’, and (2) approximate matches to ‘‘motifs’’ that are, recursively, patterns composed
of ‘‘atomic’’ symbols. A user specifies such patterns via a declarative, free-format, and strongly
typed language called A that is presented here in a tutorial style through a series of progres-
sively more complex examples. The sample patterns are for protein and DNA sequences, the
application domain for which ANREP was specifically created. ANREP provides a unified
framework for almost all previously proposed biosequence patterns and extends them by provid-
ing approximate matching, a feature heretofore unavailable except for the limited case of indivi-
dual sequences. The performance of ANREP is discussed and an appendix gives a concise
specification of syntax and semantics. A portable C software package implementing ANREP is
available via anonymous remote file transfer.

Introduction

In this paper we present a prototype system, ANREP , for defining and searching for a class of
patterns that should facilitate research into patterns ranging from relatively simple descriptions
of promotors (Hawley and McClure, 1983) and zinc fingers (Miller et al., 1985), to more com-
plex patterns, such as those recently posed for cytosine methyltransferases (Posfai et al., 1989)
and α-hemoglobins (Barton and Sternberg, 1990). The system is capable of searching sequences
for patterns that are a series of approximate pattern matches separated by specifiable distance
ranges. The patterns are communicated to the system in a small language called A .

ANREP extends previous work by providing a unified framework for concepts found in isola-
tion in earlier systems: QUEST (Abarbanel et al., 1984), a system for specifying character pat-
terns built around exact matching of regular expressions, Staden’s software (1988), that allows
for the logical combination of sequence similarities via a list of spatial constraints; and the pack-
age by Gribskov et al. (1988), that computes and analyzes profiles that are positionally weighted
������������������

*Department of Computer Science, University of Arizona, Tucson, AZ 85721.
†Supported in part by NLM grant R01-4960 and the Aspen Center for Physics

- 1 -

consensus matrices describing protein domains. Furthermore, ANREP is the first system capable
of handling approximate matches to network expressions rather than just keywords (as is possi-
ble in some earlier systems).

At the top level, our system supports patterns that are network expressions built from
motif / threshold pairs and spacers. A network expression is a regular expression without Kleene
closure†, or equivalently, any expression built up of concatenation and union operators. An
example of such a pattern is given by the following specification:

net pattern = {A,1.0}(<0,20>{B,1.0} | <-5,5>{C,1.0})<25>{D,1.0};

The letter/number pairs in curly-brackets are motif/threshold pairs, and the numbers in angle-
brackets are spacers. This network expression matches sequences consisting of some motif A,
followed by either motif B (starting somewhere between zero and twenty symbols downstream)
or motif C (five symbols upstream to five symbols downstream), followed by motif D exactly
twenty five symbols downstream from the right end of the match for motif B or C. The threshold
1.0 paired with each motif specifies the degree of precision required to match it, a 1.0 asserting
in this context that the match must be exact.

ANREP is a two-level pattern matching system in that motifs are in turn patterns, conceptu-
ally at a lower, second level. More specifically, a motif is a network expression of ‘‘atoms’’ that
are either ASCII symbols or consensus symbols that generalize symbols to weighted and/or
tailored combinations of symbol sets. For example, the motif A in the pattern above might be
defined as the following simple network expression over the ASCII symbols a, c, g, and t:

motif A = "ac(gg |ta)ct(gt)?";

The motif exactly matches any of and only the four strings acggct, acggctgt, actact, and
actactgt. Formally one says that the motif A specifies the set of strings it exactly matches.

Matches to motifs can be approximate as well as exact. A string is said to approximately
match a pattern if it can be aligned, in the sense of traditional sequence comparison, with one of
the strings specified by the pattern, in a manner that scores above a given threshold under some
scoring scheme for sequence alignments. Note that an approximate match requires the
specification of a threshold as well as a pattern. Any string can be aligned to any of the strings
specified by the pattern, but not necessarily in a fashion whose score is high enough to make it
interesting or sufficiently close to exact. In ANREP , each motif is coupled with a threshold that
defines the stringency of the approximate match as seen in the example above. Moreover, the
scoring scheme used to evaluate approximate matches is user-definable, and different scoring
schemes may be associated with different motifs or even subparts of motifs. All approximate
matches to a motif which exceed the associated threshold are considered by the system in
attempting to match the top-level network expression of spacers and motif/threshold pairs.
������������������

† Kleene closure is the repetition (zero or more times) of some substring within a motif. Kleene closure is commonly denoted by
‘‘*’’, e.g., the motif ac*a would match strings aa, aca, acca, accca,

- 2 -

Given that the matching of motifs is approximate, it follows that during the search process
each atom of a motif is conceptually scored against the search string symbol (if any) with which
it is aligned. For ASCII symbols these scores are determined by a user-defined scoring scheme.
But there is also the possibility of having an atom whose alignment scores are tailored
specifically for it, or are some admixture of the schema scores for a set of symbols. ANREP pro-
vides such a capability in the form of consensus symbols that effectively generalize Staden’s
weight matrix concept (Staden, 1988). Furthermore, the fact that motif matching is based on
alignment scores also provides an opportunity to value some portions of a match as being more
important than others, i.e., one can positionally weight various parts of a motif. ANREP’s posi-
tional weighting feature generalizes the capability embodied in Gribskov’s profile analysis
software (Gribskov et al., 1988).

The language A is free-format, declarative, and strongly typed. It permits patterns to be
hierarchically defined and parameterized, supports the development of pattern libraries, and pro-
vides both enumerative and functional mechanisms for specifying scoring schemes. At the
theoretical level, ANREP is based on a new algorithm for finding approximate matches to
motifs, and a new optimized-backtracking method for matching network expressions of motifs
and spacers. These algorithms are described in a forthcoming paper by Myers (1992) currently
available as a technical report. The approximate motif matching algorithm is output sensitive in
that its efficiency is proportionally to the stringency of the match required: the more exact the
match, the more efficient it is. The algorithm generalizes the work of Ukkonen (1985) and spe-
cializes that of Myers and Miller (1989). The backtracking algorithm matches networks of
spacers and motifs by first finding an optimal order of evaluations of its elements. Because of
this it is particularly robust: in most cases search time is relatively independent of pattern com-
plexity, as it is dominated by the time spent in an approximate search for the least frequently
occurring motif.

The next section describes important attributes of the software and how to get a copy. Then
the remainder of the paper introduces the system via a series of examples. Appendix A contains
a quick reference guide. A complete description of the syntax and semantics for the language A
are presented in Appendix B.

System and Methods

The ANREP system is implemented in C and was written and tested on a SUN 4/490 running
Sun OS Version 4.1.1. The program is portable: the requirements are an ANSI-standard C com-
piler, accompanying standard I/O library, and UNIXTM operating system. The dependence on
UNIX is in the communication of command line arguments and the ability to invoke commands
from within the program. The software may be obtained by ftp to cs.arizona.edu. For a
login use anonymous and descend to subdirectory anrep. There one will find a README file
and a compressed tar file of the system software. The README file contains directions for
uncompressing and unbundling the compressed tar file, and a makefile in the bundle con-
structs the system in an executable file called anrep. As is customary for UNIX tools, the

- 3 -

program anrep reads a pattern specification from the standard input and echos the specification
and the results of pattern searches on the standard output. In this way, anrep can be part of a
UNIX command "pipeline".

Like most systems, ANREP has a number of system defined limits. All of these are setup as
defined constants in the file anrep.h. For example, the maximum number of parameters that
may appear in a motif or network reference is set to 50 (PARMAX) but may be increased or
decreased by simply changing the definition and recompiling the system. One important con-
straint is that the definition of MAXMATCH as 10000 limits the length of the longest match that
can be reported. This should not be confused with a limit on the length of the longest sequence
that can be searched. ANREP appropriately buffers its scan of a sequence so that such a limit is
not required.

ANREP currently comprehends two very simple formats for files that are to be searched. The
first is a plain file format where the file is assumed to be just a sequence of characters. The
second is the Lipman/Pearson FASTA format (Lipman and Pearson, 1985) where the file is
assumed to be a series of header/sequence pairs. A header is a consecutive sequence of lines
whose first character is > and the sequence associated with that header is the subsequent lines to
the next header. For example:

> CCHU (PIR) Cytochrome c - Human

GDVEKGKKIFIMKCSQCHTVEKGGKHKTGPNLHGLFGRKTGQAPGYSYTAANKNKGIIWG

EDTLMEYLENPKKYIPGTKMIFVGIKKKEERADLIAYLKKATNE

> SYBEHS (PIR) Thymidylate synthase - Herpesvirus saimiri

> 127.0,1.0,4.0,1.0,1.0

MSTHTEEQHGEHQYLSQVQHILNYGSFKNDRTGTGTLSIFGTQSRFSLENEFPLLTTKRV

FWRGVVEELLWFIRGSTDSKELSAAGVHIWDANGSRSFLDKLGFYDRDEGDLGPVYGFQW

RHFGAEYKGVGRDYKGEGVDQLKQLIDTIKTNPTDRRMLMCAWNVSDIPKMVLPPCHVLS

QFYVCDGKLSCQLYQRSADMGLGVPFNIASYSLLTCMIAHVTNLVPGEFIHTIGDAHIYV

DHIDALKMQLTRTPRPFPTLRFARNVSCIDDFKADDIILENYNPHPIIKMHMAV

Which format is to be used in a given search is specifiable in the search statement invoking
the scan. This is done by giving the option — PLAIN or FASTA — immediately following the
search keyword in parentheses. If left unspecified, the plain format is assumed. Examples
illustrating this feature are included later in the paper.

Rather than try to accomodate the proliferation of file formats currently used in practice, we
chose to confine ANREP’s access to a file during a search to three routines that one can augment
to support their local needs. These three routines, described below, are the contents of the file
iopack.c, and they are currently coded to support the two formats described above.

�int Start_scan(format,file) char *format; FILE *file;

ANREP calls this routine once just before initiating a search. The parameter format is the string between parenthesis
immediately following the search-keyword of the statement invoking the scan. This parameter is the empty string if
a format does not follow the keyword. The parameter file gives the opened file to be scanned. Start_scan

should return a 0 if the format string is not recognized/supported, and 1 otherwise.

- 4 -

�char *Next_header()

When invoked, this routine is to return a string to the "header" for the next entry to be searched. If a match is found to
the ensuing entry (fetched via Get_sequence below), then this header string is displayed along with a depiction of
the match. If there is no next entry, then a NULL pointer should be returned indicating the end of the search.
�void Get_sequence(where,amnt) char *where; int amnt;

The routine is to place the next amnt characters of the current entry at the location given by where. If there are fewer
characters than this left in the entry, than the remainder should be transferred. In particular, ANREP determines that the
entry is exhausted when this routine transfers zero characters. The string transferred must be null-terminated.

The software currently embodying this simple interface should suffice as an example to the
programmer who wants to extend or alter the available formats. For example, GENBANK
(Burks et al., 1991), EMBL (Stoehr and Cameron, 1991), PIR (Barker et al., 1991), and PRO-
SITE (Bairoch, 1991) formats could all be added as desired.

Simple Patterns

ANREP ’s central function is to search a database file for instances of user defined patterns,
called networks. A network is a network expression of motif / threshold pairs and spacers. Each
motif/threshold pair, in turn, specifies an approximate match to a network expression over a set
of symbols. Given a network and the name of a database file, ANREP searches the database for
matches to the network and reports them in order of appearance.

The most simple motif is a keyword or sequence of symbols. An example of such an elemen-
tary pattern is the Pribnow box, "tata", found in many promotor sequences. To search for exact
matches to this keyword, the following statement suffices:

search DATABASE for {"tata",1.0}; # A very simple example

The search statement initiates a scan of the contents of the file DATABASE for all occurrences
of the network specified after the keyword for. The search views the file as a single long
sequence of ASCII characters, new-line symbols included. In this example, the network expres-
sion is as simple as possible: a motif/threshold pair. The motif matches the literal string tata.
We defer the treatment of approximate matching to the next section. For now it is enough to
know that a default scoring scheme is automatically in effect and is such that a threshold of 1.0
requires that the matches to the motif be exact. Thus the example above searches DATABASE
for all occurrences of the string tata. The example further illustrates that comments may
appear between statements, begin with a pound-sign (‘‘#’’), and terminate at the end of the
current line. In summary, the search statement operates on a file, specified directly after the key-
word search, and looks for matches to the network specified after the keyword for.

In general, an ANREP network pattern is a network expression of motif/threshold pairs and
spacers. The concatenation of two network expressions P and Q , denoted PQ , matches if there
is a match to P , directly followed by a match to Q . The alternation of network expressions P
and Q , denoted P | Q , matches if there is a match to either P or Q , and a match to a network
expression P can be made optional by following the P with a question mark, i.e., P? . Alterna-

- 5 -

tion has the lowest precedence†, concatenation the next lowest, and optionality the highest.
Parentheses may be used for grouping, or to change the order of precedence. A search for a pat-
tern combining the so-called ‘‘-35 sequence’’ with a Pribnow box 15 to 20 base pairs down-
stream, can be written as:

search(FASTA) DATABASE for {"ttgac",1.0} <15,20> {"tata",1.0};

where the network consists of motif ttgac, concatenated with a spacer of the appropriate
length, concatenated with motif tata. In this example, the inclusion of the format FASTA in
parentheses after the search-keyword indicates that the file DATABASE is assumed to be a
series of Lipman/Pearson FASTA formatted entries and will be searched as such. The default
format is PLAIN and may either be specified explicitly or, as in our first example, implicitly.
See the preceding section for details on these two supported file formats.

A spacer <i , j > matches at least i and at most j symbols. The special spacer <i , i > that
matches exactly i symbols may be written more simply as <i >. Moreover, both i and j may be
negative to indicate upstream rather than downstream offsets. For example:

search DATABASE for {P,1.0} <-5,10> {Q,1.0};

searches for an exact match to motif P followed by an exact match to motif Q, where the left end
of the match to Q must start anywhere from ten symbols after, to five symbols before the right
end of the match to P. Note that negative spacing permits matches to overlap, e.g., in the exam-
ple matches to P and Q may overlap by as many as 5 symbols. The pattern {P,1.0} <-x>

{Q,1.0} where x is the average length of a match to P may be used as an approximation to a
request that a given stretch match both P and Q, but is not logically equivalent when the length
of matches to P varies.

Motifs are not restricted to keywords, but can be network expressions of ‘‘atomic’’ symbols.
Regular ASCII symbols (like a, c, g, or t) are the most simple and conventional atomic sym-
bols. Examples of more complex atomic symbols (wild cards, classes, and consensus symbols)
are given in a later section.

Networks and motifs (as well as alphabets, scoring schemes and numbers to be introduced)
can be assigned to variables, which may then be used in subsequent statements. Variable names
consist of any number of letters, digits, and underscores, but must begin with a letter or an
underscore. For example, the sequence of statements:

motif Pribnow = "tat?aa?t";

motif M35Seq = "(tc)?ttgac(a |t)";
net Promotor = {M35Seq,1.0} <15,20> {Pribnow,1.0};

search DATABASE for Promotor;

������������������

† If an operator * has higher precedence than operator +, what this means is that a*b+c*d is interpreted to mean (a*b)+(c*d)
and not a*(b+c)*d. As another example, PQ|R?S is interpretated as (PQ)|(R(S?)). The precedence concept is a useful way to
avoid having to use a lot of parentheses to make the interpretation of an expression unambiguous.

- 6 -

assigns motifs to the variables Pribnow and M35Seq; then assigns a network involving these
two motif variables to the variable Promotor; and finally searches DATABASE for a match to
the network denoted by Promotor. The motif Pribnow matches one of the four strings
taat, tatat, taaat, and tataat, and the motif M35Seq matches one of the strings
ttgaca, ttgact, tcttgaca, and tcttgact. The network Promotor then matches an
exact match to M35Seq followed 15 to 20 symbols later by an exact match to Pribnow.

Variables are defined hierarchically (i.e., they must be defined before they are used), and may
be parameterized. For instance, using the definitions for Pribnow and M35Seq above, one can
define and use a parameterized network Par_Promotor as follows:

net Par_Promoter{T,S} = {M35Seq,T} S {Pribnow,T};

number cutoff = 0.75;

search DATABASE for Par_Promoter{cutoff,<15,20>};

Par_Promotor is parameterized with an approximate match threshold, T, for the two motifs
in its network expression, and a network, S, to place between them. It is ‘‘called’’ in the subse-
quent search statement with a threshold of .75 for each approximate motif match, and a spacer
of 15 to 20 symbols to place between the motifs. Any aspect of a motif or net can be parameter-
ized. Under the scoring scheme that is in effect by default, the threshold of .75 permits one sym-
bol to be mismatched in a match to Pribnow, and up to two in a match to M35Seq. The exact
nature of approximate matching will be explained in the next section.

Alphabets, Scoring Schemes, and Approximate Matches

Alphabets are sets of symbols. They are used to declare the range of symbols over which a scor-
ing scheme, and, by extension, a pattern is defined. Examples are:

alphabet DNA = [acgt];

alphabet Protein = [ARNDCQEGHILKMFPSTWYV];

which specify alphabets for DNA and protein sequences, respectively. The order of symbols
between square brackets is not important as one is specifying a set of symbols. When searching
a database, if a symbol is encountered that is not in the alphabet of a motif, then the symbol can-
not be involved in an approximate match to the motif. Such symbols may, however, be spanned
by a spacer.

In the context of approximately matching a motif, one must specify for each atomic motif
symbol, what it costs to delete that symbol, substitute some other symbol for it, and insert sym-
bols in the database sequence after it. Traditionally these edit costs are specified by a single glo-
bal scoring scheme. In most previous pattern matching systems, this underlying scoring scheme
was ‘‘hard-wired’’ into the program code. However, for many applications it is important to be
able to experiment with different scoring schemes, either between different searches for the
same pattern, or between different sub-patterns over the length of a pattern. For this reason,
ANREP provides for the explicit specification of scoring schemes.

- 7 -

A scoring scheme consists of two components: an alphabet Σ, and a (| Σ | +1) by (| Σ | +1)
scoring matrix δ whose indices range over the symbols in Σ and the special character ε ∈/ Σ. The
entries of δ define the cost of the various editing operations as follows. For x , y ∈ Σ , the cost of
replacing x with y is δ(x , y), the cost of deleting x is δ(x , ε), and the cost of inserting y is
δ(ε, y). The single entry δ(ε, ε) is not used. Figure 1 shows a scoring matrix for DNA
sequences that scores insertions and deletions, called indels, −1, unequal substitutions −.33, and
equal substitutions 1. This scoring scheme will be referred to as the Standard scheme.
Another scoring scheme, Hybrid, for DNA sequences is shown in Figure 2. Note that Hybrid
gives indels such large negative scores (denoted −∞) that they effectively cannot occur in any
approximate match scored with respect to this scheme.

ε a c g t

ε −1 −1 −1 −1
a −1 1 −.33 −.33 −.33
c −1 −.33 1 −.33 −.33
g −1 −.33 −.33 1 −.33
t −1 −.33 −.33 −.33 1

Figure 1: Sample scoring scheme, Standard

Consider the motif tata(aaaa)? which exactly matches either tata or tataaaaa.
Call these strings the sequences of the motif. An approximate match to a motif is a substring
that aligns to one of the motif’s sequences with a score that is sufficiently large. For example, in
scanning a database we may find the matches:

... agttcagcatct-aataatccgacgacgatatcgttactcgg ...

tataaa-aa tata

to the substrings tctaataa and tatc. The score of a match is the sum of the scores δ
assigns to each column of the alignment where insertions and deletions are introduced by placing
dashes in the appropriate sequence. Thus, the score of the first match under the Standard

scoring scheme is 2δ(t , t) + δ(a , c) + δ(a , ε) + 4δ(a , a) + δ(ε, t) = 3.67 and the score of the
second match is 2δ(t , t) + δ(a , a) + δ(a , c) = 2.67. Under the Hybrid scheme, the first match
scores −∞ (because indels are not allowed) and the second −8.

As seen from the Hybrid-based scores, a motif can actually match any substring of the data-
base provided one is not concerned with the resulting score of the necessary alignment. Thus
one is generally looking for matches whose score is above some threshold of interest. However,
with motifs whose sequences vary in length, giving an absolute threshold is problematic. For
example, if a threshold of 5.0 were required to report matches to our sample motif under the
Standard scheme, then only matches to tataaaaa would ever be found since the best pos-
sible match to tata scores 4.0. In general, matches to long sequences of a motif are always

- 8 -

favored over the shorter ones. To rectify this, ANREP , compares a match’s length relative score
to the given threshold. The length relative score is obtained by dividing the score of the align-
ment by the length of the motif sequence involved in it. For example, the length relative scores
of the matches above are .459 and .667, respectively. Further, the motif/threshold pair,
{tata(aaaa)?,0.4} reports matches to tataaaaa whose absolute scores are above 3.2,
reports matches to tata scoring above 1.6, and matches both of the substrings in the example
above.

A score statement can be used to name and define a scoring scheme over a given alphabet.
Two formats are provided for defining the scoring matrix δ — an enumerative and a functional
format. Both formats may be combined within the same score declaration statement. All entries
not set explicitly have a value of −∞, i.e., not permitted. The enumerative format requires giving
a list of matrix entries to be set, and the values they are to be set to. This format is useful for
scoring schemes like the Dayhoff metric (Dayhoff 1978), where values do not have an easily
characterizable pattern. An example of such a specification is the fragment:

score Dayhoff = Protein { <A.A> # 0.90;

<A.R> # 1.09;

<A.N> # 0.99;

<A.D> # 0.98;

<A.C> # 1.12;

...

};

which declares a variable, Dayhoff, of type scoring scheme over the alphabet Protein, and
assigns values to entries in the semi-colon separated list between curly braces. Each item in the
list consists of a set of matrix entries to the left of a pound sign and the value to assign to them to
its right.

Within a pair of angle brackets, one can specify a set of matrix entries in a number of ways.
The most basic specification is to give a comma-separated pair of characters, <x,y>, which
denotes the individual entry, δ(x , y). Both x and y must be from the underlying alphabet of the
scoring scheme, or they must be the ASCII symbol $ which stands for ε. Either x or y (or both)
can be replaced by a list of characters between square brackets, in which case the denoted set of
matrix entries is the cross product of the sets of characters in each list, e.g., <[ac],[gt]>

denotes the set of entries <a,g>, <a,t>, <c,g>, and <c,t>. If a period separates the
pair instead of a comma, then the set denoted is the ‘‘symmetric’’ cross product of the left and
right parts, e.g., <A.R> denotes the entries <A,R> and <R,A>; and the notation
<[ag].t> denotes the entries <a,t>, <g,t>, <t,a>, and <t,g>. Finally, the notation
<x> denotes the entries <x , y > where y ranges over all the symbols in Σ, i.e., it denotes the
entire row of the matrix labeled x except for the entry <x , ε>. An example making use of some
of these forms is:

- 9 -

score Hybrid = DNA { <[acgt]> # -2;

<c.g> # 3;

<a.t> # 2;

<g.t> # 1;

};

that creates a ‘‘hybridization’’ matrix where each pair of nucleotides that can stack is scored
according to the number of hydrogen bonds it contributes to the duplex, and non-stacking pairs
are scored −2. Note that each specification should be thought of as being ‘‘executed’’ in order of
appearance. Thus the entry for δ(a , t) is first set to −2 in the first line, and later set to 2 in the
third line. The matrix resulting from the above definition is shown in Figure 2.

ε a c g t

ε −∞ −∞ −∞ −∞
a −∞ −2 −2 −2 2
c −∞ −2 −2 3 −2
g −∞ −2 3 −2 1
t −∞ 2 −2 1 −2

Figure 2: Hybridization scoring scheme, Hybrid

For the functional format, the part to the left of the pound sign is a boolean expression in two
variables x and y that can take on values from Σ ∪ {ε}. For every pair of symbol choices for x
and y for which this expression is true, the entry δ(x , y) is set to the value given by the expres-
sion in x and y to the right of the pound sign. Both these expression may be arbitrary expres-
sions in the C programming language. As such the ‘‘boolean’’ expression to the left of the
pound sign is considered false if its value is 0 and true otherwise. For example:

score Standard = [acgt]

{ x!=’$’ && y!=’$’ # (4*(x==y) - 1) / 3.;

< [acgt] . $ > # -1.;

};

defines the Standard scoring scheme for DNA sequences shown in Figure 1. All entries of
the matrix δ, except for the first row and the first column (where the expression x != ’$’ &&

y != ’$’ evaluates to false) are set to the value of the expression to the right of the pound
sign which evaluates to 1.0 when x = y and −.33 otherwise. The ε entries are set by the second,
enumerative clause to −1.

In an ANREP specification there is the concept of the current scoring scheme. Initially, it is
set by default to the unitary scoring scheme, Unitary, over the alphabet of ASCII characters.
The δ-matrix for this scheme does not permit indels, scores identical substitutions 1, and
mismatches 0. Defining a scoring scheme has the effect of making it the current one. It then
applies to all motif definitions until another score statement is encountered. Moreover, at the
time of its definition, a motif is bound to the current scoring scheme in the sense that it is the one

- 10 -

used to score matches to the motif, regardless of any resettings of the current scheme subsequent
to the definition. The abbreviated statement:

score MyScheme;

assumes MyScheme is a previously defined scoring scheme variable, and has the effect of mak-
ing it the current one. This permits one to define a number of schemes and have different ones
be in effect for different portions of the specification.

Recall that in the examples of the first section, it was asserted that patterns of the form
{P,1.0} required exact matches to the network expression of the motif for P. Since no scoring
schemes are defined in those examples, the default unitary scoring scheme was in effect
throughout. Under this scheme the only way a match can have a length relative score of 1.0 is
for its absolute score to be equal to the length of the motif word it matches, and the only way this
can happen is if the match is exact because only equal substitutions score at least 1. Thus in the
default case, {P,1.0} denotes an exact match to P. This is also true for the Standard

scheme above, but not for schemes like Hybrid.

While the current scoring scheme is generally used to determine the scoring of a motif
declared within its scope, any part of a motif may be scored under any other scheme by follow-
ing the part in question with an exclamation mark (‘‘!’’) and the name of the scoring scheme to
be applied to it. The exclamation mark operator has the same precedence as optionality (‘‘?’’).
For example, for the motif M35Seq defined as follows:

score Unitary;

motif M35Seq = "(tc)? (ttgac)!Standard ((a |t)t)?";

an approximate match is scored with the default unitary scheme except for the part of the match
to the submotif ttgac which is scored with the sample scoring scheme of Figure 1. For exam-
ple, if the motif sequence tcttgacat is matched to the sequence actgccaat as follows:

ac | t-gcca | at
tc | ttgac- | at

then the part of the alignment between the bars is scored with Standard and the rest with
Unitary. The former scores .67 and the latter two parts score 3 for a length relative score of
.408. Note that the unaligned a is considered to be a part of the alignment scored with Stan-

dard. In general, an unaligned character in the database is scored according to the scheme
associated with the first motif symbol to its left. If there is no such motif symbol, then the
unaligned database character is scored according to the current scheme.

Positional Weights

The concept of positional weights is introduced into ANREP to let the user express the relative
importance of different parts of a motif. With any submotif, one can associate a factor or weight
by placing a colon after the subexpression in question, followed by the weight, an integer or real
number in the range ±10.010. The precedence of the colon operator is the same as that of ‘‘!’’

- 11 -

and ‘‘?’’. The score for aligning the given submotif is multiplied by the score of the associated
weight. Thus weights of greater than 1 increase the importance of a portion of a motif, and
weights less than 1 decrease their relative importance. In addition, nested weight factors multi-
ply. That is, if a subexpression weighted by α is nested within another that is weighted by β,
then the scores of the alignment for the inner motif are multiplied by αβ. As an example of
positional weighting consider:

motif M35Seq = "(tc):.5 ttgac ((a |t):.5 t):.5";

which simply ‘‘downgrades’’ the less important parts of motif M35Seq as opposed to making
them entirely optional, as was done previously. The first sub-motif, tc, has a weight of 0.5; the
second sub-motif, ttgac, has the default weight of 1.0; the third sub-motif, a |t, has a weight
of 0.25 (nested weights), and the last sub-motif, t, has a weight of 0.5.

When using positional weights, the relationship between scores, weights and length-relative
thresholds should be kept in mind. For example:

net Pribnow1 = {"ta t:.5 a a:.5 t",1.0};

net Pribnow2 = {"(ta):2 t a:2 a t:2",1.0};

are not equivalent patterns. Assuming the default unitary scoring scheme and an input string
(database) of ...tatact..., net Pribnow1 matches with an absolute score of 4.5, which
translates into a length-relative score of 0.75. For Pribnow2, however, we get an absolute
score of 9.0, and a relative score of 1.50. The threshold of 1.0 is therefore appropriate only for
Pribnow2. To obtain identical results with Pribnow1, its threshold should be set to 0.5.

Atoms

Motifs are network expressions built up with the operators | , !, :, concatenation, and ? from a
collection of atoms which in all the examples thus far have simply been ASCII characters. The
set of ASCII symbols permitted in a motif are restricted to be those in the alphabet of the scoring
scheme associated with part of the motif the symbol is in. For instance, in the case of the Stan-
dard scoring scheme defined earlier, the legal symbols are those of the alphabet DNA =
{a,c,g,t}. In this section, we specify and illustrate the ways ANREP extends the notion of
atom in a number of powerful ways.

The Wild Card

The wild card symbol, a period (‘‘.’’) in ANREP , is an atom which is defined for all alpha-
bets and matches any symbol from the alphabet of the current scoring scheme. An example is:

motif wild = "ca.t";

which matches any one of the four strings caat, cact, cagt, and catt (provided DNA is the
alphabet of the current scoring scheme). The wild card scores 0 when substituted for any char-
acter and may not be deleted. But the most unique characteristic of a wild card is that it does not

- 12 -

contribute to the length of the motif sequence matched to the text even though it must be substi-
tuted for. For example, if wild is matched to the text string ctgt under the Unitary scoring
scheme, the length of the match is 3 (not 4), and the length relative score is .667 (not .5). The
reason for this feature is that it is desired that wild cards be usable as intra-motif spacers.† For
example, PartA"....?.?.?"PartB is a motif where a match to the pattern for PartA is
separated from a match to the pattern for PartB by 3 to 6 symbols. The critical semantic differ-
ence between the above and putting a spacer between motifs for the two parts, is that the exam-
ple is considered a single motif. Thus the length-relative score of a match to this single motif is
the sum of the scores of the two subpart matches divided by the sum of the lengths of the two
subpart motif sequences involved.

Symbol Classes

A symbol class is a generalization from a single-symbol to a multi-symbol atom. A symbol
class is specified as a set of symbols in square brackets, and it matches any of the symbols in the
set. For example:

motif class = "a[act]a";

matches any one of the strings aaa, aca, and ata. Of course, this motif could also be written
as:

motif class = "a(a |c |t)a";

but not only is the symbol class easier to specify than the alternation of symbols, it also is much
more efficiently searched for.

It should be noted that the declaration:

motif semi_wild = "ca[acgt]t";

is not equivalent to the wild card example above for three reasons: (1) if substituted for, the class
has zero score only if the maximum substitution cost against one of the characters is zero, (2) the
class may be deleted if any of the class’ characters can be deleted, and (3) the class counts in the
length of a match. For example, under the Unitary scoring scheme semi_wild matches
ctgt with an absolute score of 3, and a length relative score of .75.

Consensus Symbols

In an effort to provide the user of the system with even finer control over the motif to be
matched, ANREP further generalizes symbol classes to consensus symbols. Consensus symbols
provide a way of specifying, at a given position in a motif, exactly which symbols do or do not

������������������

† Another reason for this choice is that the alternative — counting a wild card in the length of a match — is attainable with an ap-
propriately designed consensus symbol. The definition chosen gives ANREP a capability it would not otherwise have.

- 13 -

match, and their scores. That is, they allow one to create a ‘‘symbol’’ whose edit costs are either
explicitly specified or are a function of the edit costs for a set of characters.

In order to define the effect of consensus symbols and to show that they generalize symbol
classes, the concept of a cost vector is needed. How a specific symbol, say x , of a motif is
aligned in a match is completely determined by the scores for replacing it, deleting it, and insert-
ing characters after it. These scores are all contained in just two rows of the underlying scoring
scheme in effect for the portion of the motif containing x . Namely, the ε-row, δ(ε, Σ), which
gives the cost of inserting symbols after x , and the x-row, δ(x , Σ ∪ {ε}), which gives the cost for
deleting x (δ(x , ε)), and substituting another symbol for x (the rest of the vector). We call these
two vectors the cost vectors associated with symbol x . Figure 3 shows the cost vectors for sym-
bol g, again assuming the Standard scoring scheme for DNA sequences.

ε a c g t
�������������������������������������� ε −1 −1 −1 −1

�� δ(ε, Σ)
������������������������������������
a −1 1 −.33 −.33 −.33
c −1 −.33 1 −.33 −.33
��������������������������������������
g −1 −.33 −.33 1 −.33

�� δ(g , Σ ∪ {ε})
������������������������������������
t −1 −.33 −.33 −.33 1

Figure 3: Cost vectors for symbol g

Now note that if one knows the two cost vectors for a symbol then one no longer needs to
know the symbol in order to correctly align and score the position it occupies in a motif. That is
one may think of a symbol as just being a shorthand for the specification of two cost vectors. A
consensus symbol is ANREP ’s mechanism for creating ‘‘symbols’’ whose cost vectors are under
explicit user control. There are two different kinds of consensus symbols. For a reduction con-
sensus symbol, the cost vectors are determined by some functional combination of the cost vec-
tors of the symbols in the character class notation specifying the consensus symbol. The combi-
nation function, or so-called reduction, to be employed is specified by the first symbol after the
left square bracket: ‘‘>’’ for maximum, ‘‘˜’’ for average, and ‘‘<’’ for minimum. For a tailored
consensus symbol, to be discussed latter, the elements of its cost vectors are explicitly set via a
syntax that is a variant of the class notation.

The cost vectors of a reduction consensus symbol are obtained by applying the appropriate
reduction function, element-wise, to the cost vectors of the set of symbols in its specification.
For example:

motif ReductionSymbols = "[˜at][>at]" ! Standard;

consists of two consensus symbols [˜at] and [>at], whose cost vectors are the average and
maximum reductions, respectively, of the cost vectors for the symbols a and t. Figure 4 shows
how these new cost vectors are computed from those of the symbols. The immediate question is,
‘‘Why are the deletion and insertion scores −∞?’’ In order to increase flexibility we chose to

- 14 -

make indels prohibited as the default, i.e., the reduction function is applied to all substitution
costs, but indels are automatically set to −∞. If it is desired that either or both insertion and dele-
tion scores be set according to the reduction of the contributing symbol cost vectors, then one
should include a ‘‘-’’ for deletions, and ‘‘+’’ for insertions, into the character class of the con-
sensus symbol. Figure 4 illustrates this as well. It should be clear that the idea of reductions
could employ other functions. Minimum, maximum, and average were those that we thought
clearly useful.

δ(ε, Σ) δ(X , Σ ∪ {ε})
X

a c g t ε a c g t
���

a −1 −1 −1 −1 −1 1.0 −.33 −.33 −.33
t −1 −1 −1 −1 −1 −.33 −.33 −.33 1.0

[˜at] −∞ −∞ −∞ −∞ −∞ .33 −.33 −.33 .33
[>at] −∞ −∞ −∞ −∞ −∞ 1.0 −.33 −.33 1.0

[˜at+] −1 −1 −1 −1 −∞ .33 −.33 −.33 .33
[>at+-] −1 −1 −1 −1 −1 1.0 −.33 −.33 1.0
��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

Figure 4: Computation of cost vectors for several consensus symbols

The special symbols + and -, when introduction into a consensus symbol’s class, ‘‘turn on’’
the application of the reduction function to the insertion and deletion scores, respectively. The
addition of another special symbol, ˆ, has the effect of introducing every symbol not in the class,
into the reduction computation. Alone this last feature is not of much value because it implies
that the reduction is over every symbol in the alphabet. But it is also possible to weight the con-
tribution of each symbol’s vector by placing a weight after the symbol separated with a colon.
The notation for these weights is similar to that for positional weighting but the syntax is
simpler: a given weight applies to all symbols to the left of it, but right of the previous weight.
For consistency the required default is that unweighted symbols are weighted 1. To illustrate
these features, consider the examples:

motif Complex1 = "[> ag:1.5 ˆ]!Standard";

motif Complex2 = "[> -:0.8 +:0.5 ag:1.5 ˆ]!Standard";

that leads to the cost vectors shown in Figure 5. For Complex1 substitution scores are the
maximum reduction of all letters, where a and g are weighted 1.5 (ag:1.5) and other symbols
1.0 (ˆ included but not weighted). Insertions and deletions are not allowed. The consensus sym-
bol of Complex2 is the same, save that insertion and deletion have been "turned on" at weights
0.5 and 0.8, respectively. Note that these weights are applied to the result of the weighted reduc-
tion of the cost vectors implied by the other characters in the class. In this way, insertion and
deletion costs may have their scores increased or decreased relative to substitution scores.

- 15 -

δ(ε, Σ) δ(X , Σ ∪ {ε})
X

a c g t ε a c g t
���

a (−1 −1 −1 −1)*1.5 (−1 1.0 −.33 −.33 −.33)*1.5
g (−1 −1 −1 −1)*1.5 (−1 −.33 −.33 1.0 −.33)*1.5
c (−1 −1 −1 −1)*1.0 (−1 −.33 1.0 −.33 −.33)*1.0
t (−1 −1 −1 −1)*1.0 (−1 −.33 −.33 −.33 1.0)*1.0

Complex1 −∞ −∞ −∞ −∞ −∞ 1.5 1.0 1.5 1.0
Complex2 −.5 −.5 −.5 −.5 −.8 1.5 1.0 1.5 1.0
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

Figure 5: Computation of cost vectors for consensus symbol Complex

It should now be evident that consensus symbols are in fact a generalization of symbol
classes. Specifically, [act] is equivalent to [>+-act] and is implemented exactly this way.
This is significantly faster than (a|c|t) because a single pair of cost vectors is built once for the
consensus symbol, rather than repeatedly having to take a three-way maximum during the
matching of the network. With the weighting feature and the special features embodied in +, -,
and ˆ, ANREP provides a rich set of possible ways of summarizing the information content of a
position in a motif.

The final atomic symbol to be considered, is the tailored consensus symbol that permits one
to explicitly specify each element of the consensus’ cost vectors. An example of such a
‘‘tailored’’ symbol is:

motif Tailored = "[= +:-1 ag:2 ˆ:1]";

The syntax is exactly the same as that of a reduction consensus symbol, but the interpretation is
different. In this case, the weight associated with a symbol is the score for matching that sym-
bol. For example, in the case of motif Tailored, substituting an a or g scores 2, substituting a
c or t scores 1; each symbol inserted immediately after it scores −1, and the symbol may not be
deleted. Any character that is not associated with a weight is assumed to be scored −∞, i.e., not
permitted. For example, [=a], must be matched to the symbol a at cost 1. It is the only sym-
bol that the atom can be aligned with and it must be aligned with it because the atom cannot be
deleted or inserted.

Tailored consensus elements permit one to specify arbitrary weight matrices (Staden, 1988;
Stormo 1990). For example, Hawley and McClure (1983) compiled the Pribnow sequence of
112 E. Coli promotors. While the consensus is tataat, as used in the patterns of the first sec-
tion, very few promotors exactly match this string. A better summary of the information present
in the promotor region is a record of the percentage of times each character appears in a given
position of the promotor. The motif below captures this information in the weight matrix of con-
sensus symbols below. For example, the second consensus symbol asserts that an a appears in
the second position 94% of the time. The length relative score of a match of HandM to the con-
sensus tataat is 4.22/6 = .703.

- 16 -

motif HandM = "[= a:.02 c:.09 g:.10 t:.79]

[= a:.94 c:.02 g:.01 t:.03]

[= a:.26 c:.14 g:.16 t:.44]

[= a:.59 c:.13 g:.15 t:.13]

[= a:.50 c:.20 g:.13 t:.17]

[= a:.01 c:.03 g:.00 t:.96]";

While the matrix above illustrates the concept of the position of a consensus pattern as being
tendencies to be certain symbols, many investigators advocate that these tendencies be the log
(to the base of the alphabet size) of the odds ratio of each symbol (Stormo, 1990). For example,
the consensus symbol for the first position of the pattern above would be [= a:-1.82 c:-

.74 g:-.66 t:.83]. We will not treat such information based measures in detail here, we
simply wish to point out that ANREP provides the capability to model such patterns.

Note that consensus symbols, while inducing quite intricate cost vectors, are conceptually just
‘‘characters’’ in a motif. Thus their scores are still subject to multiplication by positional
weighting factors, and the final score of a match to the motif containing them will be normalized
with respect to length before being compared against the threshold.

Libraries, Environment Interface, and Search Output

To facilitate libraries of predefined components, ANREP provides an include statement that
when encountered reads the contents of the specified file and processes the ANREP statements
therein as if they had been typed in-line. Include statements may be nested. For example,
setting up the Dayhoff scoring scheme from the earlier section requires typing 110 entries. This
can be done once, put in a file (for this example Dayhoff), and then included in any desired
pattern specification with the statement:

include Dayhoff;

One might, for example, develop a library of oft-used alphabets and scoring schemes and include
it at the start of every ANREP specification. Another example would be to establish a
parameterized pattern specification in a file and then experiment with it by invoking ANREP in
interactive mode, including the pattern specification, and then making a series of enquiries into a
database with search statements over the parameterized pattern. Another example would be
to develop libraries of patterns from, say, the PROSITE repository.

In some cases, the specification ANREP is to be applied to may be the result of a calculation.
For example, one may want to search for patterns that are formed by taking some kind of con-
sensus of a multi-alignment (Gribskov, 1988; Barton and Sternberg, 1990). To facilitate such
situations the execute statement can capture the output of any program and then process it as
if it had been included directly into the specification. As a simple example, the ANREP package
contains a program pam that produces a valid A score statement defining a Dayhoff substitution
matrix at any desired number of PAMs. The execute statement below issues the command in

- 17 -

quotes as if it had been typed at the command-line level, and captures the output which defines a
scoring scheme PAM135 that is the Dayhoff matrix at 135 PAMs.

execute "pam -n135 -iPAM135";

The program pam also has an option to scale the matrix. Note that the execute statement is a
generalization of the include statement as seen by the fact that, execute "cat foo", is
identical in effect to, include foo.

Just as it is useful for ANREP to be able to "call" other programs with the execute state-
ment, so it is that other programs can call ANREP with parameters that control its execution. At
the command-line level ANREP is invoked by the command, anrep <arg1> <arg2>

..., where the command-line arguments are optional and arbitrary. In keeping with UNIX con-
vention for "pipes", ANREP expects to see the A specification on the standard input, and pro-
duces the echo and search results on the standard output. Any command-line arguments are
passed separately to ANREP as character strings. Within the A specification, any occurrence of
a string of the form @i where i is an integer, is interpreted to be a reference to the i th argument
on the command line. The argument string is substituted for the reference before ANREP
processes the specification, so there are no restriction on the syntax of the argument other than
that the specification after substitution be syntactically valid. For example, if a specification
contains the statement:

execute "pam -n@1 -iDayhoff";

then the command anrep 250 will interpret the specification as producing a Dayhoff matrix at
250 PAMs. One may pass thresholds, names, patterns, or any other pertinent specification
feature as a command line argument.

The execute statement and command-line features allow ANREP to invoke other programs
and to be controlled by programs that invoke it, respectively. These mechanisms for interacting
with the environment are rich enough that one can use ANREP as the search engine for a pattern
learning system. The system produces an initial instance of the variable part of the pattern to be
learned as an appropriately parameterized ANREP specification. Then it invokes ANREP on a
specification containing (1) the fixed pattern parts, (2) an execute- or include statement
that fetches the generated part, and (3) a search of the pattern over a training set. The results are
captured by the pattern learning system, the parameters refined, and ANREP re-invoked in a
classic feedback loop, until the pattern is learned.

When invoked ANREP echos the pattern specification given to it as input (but not the con-
tents of included files), and after each search statement outputs a display of each of the
matches it finds for that search. What this display looks like depends in part on the the
parenthesized modifier of the search statement that asserts the format of the data to be
searched. Recall from the section on System and Methods that the formats supported depend on
the coding of the I/O routines in iopack.c. Each match is prefaced by the "header" returned
by the routine Next_header. For the PLAIN format this is null since there is only one

- 18 -

sequence. For the FASTA format the lines beginning with a > immediately before the sequence
entry containing the match constitute the header. The substring of the entry or string against
which a match is found is displayed, 50 characters to a line if more than one line of output is
required. Each of these segments is enclosed in brackets of the form i> and <j, where i and j
are the positions of the first and last symbols of the string matched, respectively. Underneath
these segments is a line for each matched motif, where the lines are in left-to-right order of the
motifs involved in the match. Each motif match is depicted by a line of the form: "x:
..ˆˆ..", where x represents the length-relative score of the best match to that particular motif.
The circumflex symbols are positioned under those database symbols giving the best match, and
the period symbols indicate the total range of possible matches. For example, the search in the
comprehensive example of the next section results in several matches, one of which is reported
as follows:

>S00920 (PIR) Modification methylase, NgoPII - Neisseria

13> KIISLFSGCGGLDLGFEKAGFEIPAANEYDKTIWATFKANHPKTHLIEGD <62

1.0000: ..ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ..

0.8750: ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ

1.0000: ˆ->

63> IRKIKEEDFPEEIDGIIGGPPCQSWSEAGALRGIDDARGQLFFDYIRILK <112

1.0000: ˆˆ

1.0000: ..ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ..

1.0000: ˆˆˆˆˆˆˆ

113> SKQPKFFLAENVSGMLANRHNGAVQNLLKMFDGCGYDVTLTMANAKDYGV <162

1.0000: .ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ.

1.0000: ˆˆˆˆ

1.0000: ..ˆˆˆˆˆˆˆ->

163> AQERKRVFYIGFRKDLEIKFSFPKGSTVEDKDKITLKDVIWDLQDTAVPS <212

1.0000: ˆˆˆˆˆˆˆˆˆˆˆ..

213> APQNKTNPDAVNNNEYFTGSFSPIFMSRNRVKAWDEQGFTVQASGRQCQL <262

263> HPQAPKMEKHGANDYRFAAGKETLYRRMTVREVARIQGFPDNFKFIYQNV <312

1.0000: .ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ.

0.9091: .ˆˆ->

313> NDAYKMIGNAVPVNLAYEIAA <333

0.9091: ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ.

Note, for example, that the small motif, VII, of the example matches in potentially two places
on the line displaying symbols 115 to 164 of the sequence. The -> at the end of the display of
symbols 115 to 164 indicates that the match to that motif continues on the next line.

A Comprehensive Example

To illustrate the use of ANREP on a real problem, we show how it might be applied to the pat-
tern developed by Posfai et al. (1989) for the structure of the cytosine methyltransferases (m5C

- 19 -

MTases). The example illustrates the flexibility of ANREP and the ease with which it can be
used. Using a program that looks for strongly conserved positions and a data set of thirteen bac-
terial m5C MTases, the investigators proposed that such MTases are characterized by a pattern
consisting of a sequence of ten motifs in their amino acid sequences. In the syntax of ANREP
the pattern is given by:

Cytosine Methyltransferase pattern (Posfai et al. NAR 17, 7 (1989))

motif I = "[ILM][DS][FL]F[ACS]G.[GM][AG][FIL]..[AGS]....G";

motif II = "[ILV]..[INS][DE].[DFN]..[AI]..[STV][FIY]..[IN]";

motif III = "D[IV][RST]";

motif IV = "[DN].[ILV].[AGS]G[FPS]PC[PQ].[FW]S..G.....[EDS]";

motif V = "[EDP].[QR][GN].[LMV][FY]";

motif VI = "[PT].....ENV.[GN]......[GKN]";

motif VII = "[DG]Y.[FIV]";

motif VIII = "[DIN][ADS]..[FHY][FGN][ILV][AP]Q.R[EKQ]R...[EIV][ACG]";

motif IX = "R.[FLM][HTS]..E..[ARV][ILV][MQ].[FY][DEP]";

motif X = "[KRS]....Y[KQR][EMQ].GN[AS][IV].[IPV].[ALV]....[AFG]";

net MTase{t} =

{I,t} <-9,39> {II,t} <-5,20> {III,t} <-4,34> {IV,t} <-13,41> {V,t} <-1,19>

{VI,t} <1,42> {VII,t} <-7,21> {VIII,t} <34,322> {IX,t} <-5,25> {X,t};

search(FASTA) PIR for MTase{.8}; # Search FASTA-formatted PIR for an 80% density match.

The individual motifs were arrived at by looking for positions that were perfectly conserved, and
secondarily, those positions that varied among two or three amino acids. Positions containing
more than three amino acids were considered non-specific and modeled as wild-cards in the pat-
tern above. The stretches accepted as motifs, were those whose probability of matching at ran-
dom in the database of interest was less than a certain level. For the spacing between the motifs
the investigators used the variation that occurred between motif instances in the thirteen MTases
analyzed.

The focus of the authors was to arrive at a pattern that exactly discriminated the MTases in
that it matches only and every protein sequence that functions as a methyltransferase. ANREP
doesn’t help investigators arrive at potential patterns, but given a hypothesis, it is very easy to
use ANREP as a search vehicle to see if the proposed pattern does indeed discriminate and to
what degree. The example above illustrates how easy it is to set up a search. In fact, the pattern
above generalizes the pattern given in the paper in several ways. First, matches may be approxi-
mate to varying levels of stringency by adjusting the single parameter t that controls the

- 20 -

stringency of all ten motif matches simultaneously. Under the default scoring scheme, searching
with t set to 1.0 looks for exact matches. Second, the spacing between the motifs was
loosened by expanding each spacer by 10 positions on each side (e.g. <1,29> was expanded to
<-9,39>), except for the large interval between motifs VIII and IX which was expanded by
50 on each side. It is interesting to note that with t set to .8, this pattern when searched against
the PIR database matched exactly those MTases in the database and no others with the one
exception of the more recently sequenced NgoPII methylase that the authors also found by
searching for less than "perfect" matches but in basically an ad hoc fashion.

The power of ANREP is that such experimentation with pattern variations is easy to realize
along a number of dimensions. For example, one could establish different stringency parameters
for different motifs, one could affect the matching process by establishing, say, the PAM250
scoring scheme before the definition, one could vary the spacing between motifs, one could posi-
tionally weight atoms dependent on their ambiguity, one could switch from character classes to
averaged classes, and so on. More concretely consider the two examples of how one might
"experiment" with motif I.

motif I = "[ILM] ([DS] [FL] :2) (F:3) [ACS] (G:3) .

([GM] [AG] :2) [FIL] .. [AGS] (G:3)" ;

motif I = "[˜ I:7 L:3 M:3 +-] [˜ D:6 S:7 +-] [˜ F:1 L:12 +-] [˜ F:13 +-]

[˜ A:5 C:1 S:7 +-] [˜ G:13 +:.9 -] . [˜ G:12 M:1 +-] [˜ A:3 G:10 +-]

[˜ F:6 I:3 L:4 +:.8 -] .. [˜ A:5 G:7 S:1 +:.6 -] [˜ G:13 +-]";

Both definitions attempt to affect the value of each position in the pattern according to how
unambiguous it is among the thirteen MTases. In the first case, positions that were absolutely
conserved are weighted 3, those that varied among 2 amino acids are weighted by 2, and the rest
by 1. The second cases attempts to take the actual composition of each position into more care-
ful consideration by letting each position be the weighted average of the symbols that occurred
in each position among the thirteen MTases that defined the pattern. In fact the second definition
corresponds exactly with the manner in which many authors such as Gribskov (1988) and Barton
and Sternberg (1990) have chosen to summarize information from a multi-alignment into a con-
sensus. Note that the cost of insertions for the symbols just before wild-cards is positionally
downgraded as might be done in a Gribskov profile. That is, insertion is (admittedly arbitrarily)
weighted 90% before a single wild-card, 80% before two, and 60% before four. The idea is that
there is greater variability in the pattern at such locations. Note that unlike Gribskov’s work,
ANREP cannot support affine gap costs.

As a final example, we demonstrate that ANREP is capable of modeling Barton and
Sternberg’s "flexible patterns". Already noted just above is the capability of summarizing a
position in a multi-alignment by the weighted average of the cost vectors for the residues in a
column of the alignment. We also not that the other four scoring methods mentioned in Barton
and Sternberg (1990) can also be easily realized in ANREP . Between the strongly conserved
motifs, they advocate allowing spacing according to the variation found in the multi-alignments.
This could be done with spacers but in order to exactly mimic their work, one needs to use

- 21 -

wild-cards so that the pattern is still a single motif. The α-hemoglobin example from the paper
would be modeled as follows:

Globin pattern (Barton and Sternberg, J. Mol. Biol. 212 (1990))

motif I = ...;
motif II = ...;
motif III = ...;
motif IV = ...;
. . .

motif S0_12 = ".?.?.?.?.?.?.?.?.?.?.?.?";
motif S0_4 = ".?.?.?.?";
motif S0_17 = ".?.?.?.?.?.?.?.?.?.?.?.?.?.?.?.?.?";
motif S3_14 = "....?.?.?.?.?.?.?.?.?.?.?";
. . .

motif globin = I S0_12 II S0_4 III S0_17 IV S3_14 ...;

As noted earlier, the intra-motif spacers realized by the wild cards do not contribute to the score
of a match to globin. It should further be noted that ANREP searches for matches to this pat-
tern with the same efficiency as the specific algorithm described within Barton and Sternberg’s
paper. In other words, the approximate pattern matching algorithm at the heart of ANREP
immediately implies their algorithmic result as a special instance.

Discussion

This paper introduces a new language, A , for specifying patterns ranging from very simple to
very complex, and a prototype system, ANREP , for searching for approximate matches to these
patterns. The most obvious difference to previous systems is the expressive power and versatil-
ity of the new system. While ANREP incorporates many features that are also found in older
systems, it adds many new concepts not found elsewhere. Among these are (1) the capability of
searching for approximate matches to entire networks, (2) the ability to concisely specify alpha-
bets and scoring schemes and to attach them to different parts of a pattern, and (3) the flexibility
to specify atoms via consensus symbols and positional weights.

In addition to the new language features, both the efficient approximate match search algo-
rithm, and the optimized-backtracking search strategy have also proven to be very successful —
the system is still quite fast given the complexity of the patterns it can search for. For example,
interpreting the specification of the MTase pattern of the previous section and searching our
3MB version of the PIR took ANREP 174 seconds on a 33MHz workstation. Search speed was
clocked at 54 seconds per megabyte and this speed does not vary much, even as patterns become
more complex. As long as some motifs in the pattern are quite specific, the time taken doesn’t
even vary much with the specificity of a pattern. For example, the same search with t = 1.0

took 168 seconds.

While most of our experience with ANREP points to a solid and useful system, we also found
some areas where further research is necessary or desirable. First, an option to precompile

- 22 -

patterns and to use the resulting pattern-specific code for database searches (rather than interpret-
ing a pattern using general-purpose code) may result in an order of magnitude speed improve-
ment. This would be very useful in cases where large databases need to be searched for the
same pattern. Search times could be reduced even further if the system could recognize and take
advantage of the (frequent) special case of exact matches to motifs.

Another area of possible improvement concerns better support for frequently occurring types
of motifs. While A allows nearly unlimited flexibility in the specification of symbols, more of
this flexibility is desirable at the motif level. In particular, a quantified Kleene closure operator
would be useful for internal repeats within motifs (i.e., the ability to specify a certain number or
range of numbers of repeats). Other potential additions include a shorthand notation for the
complement (in the sense of Watson-Crick base pairs) of a motif, patterns that match any permu-
tation of a given set of motifs, and a pattern that matches any spacer not containing a match to a
motif.

A final direction for future research, would be to couple ANREP with a facility which
automatically infers patterns, perhaps by using the ANREP search engine to investigate changes
in sensitivity and specificity as a potential pattern is varied among various dimensions.

References

Abarbanel, R.M., Wieneke, P.R., Mansfield, E., Jaffe, D.A., and Brutlag, D.L. (1984), ‘‘Rapid
searches for complex patterns in biological molecules,’’ Nucleic Acids Research, Vol.
12, No. 1, pp. 263-280.

Bairoch, A., (1991) ‘‘PROSITE: a dictionary of sites and patterns in proteins,’’ Nucleic Acids
Research, Vol. 19, Sequences Supplement, pp. 2241-2245

Barker, W.C., George, D.G., Hunt, L.T., and Garavelli, J.S. (1991) ‘‘The PIR protein sequence
database,’’ Nucleic Acids Research, Vol. 19, Sequences Supplement, pp. 2231-2236

Barton, G.J. and Sternberg, J.E. (1990) ‘‘Flexible protein sequence patterns: A sensitive method
to detect weak structural similarities,’’ J. Mol. Biol., Vol. 212, pp. 389-402.

Burks, C., Cassidy, M., Cinkosky, M.J., Cumella, K.E., Gilna, P., Hayden, J.E.-D., Keen, G.M.,
Kelley, T.A., Kelly, M., Kristofferson, D., and Ryals, J. (1991), ‘‘GenBank,’’ Nucleic
Acids Research, Vol. 19, Sequences Supplement, pp. 2221-2225

Dayhoff, M.O. (1978), Atlas of Protein Sequence and Structure, Vol. 5, Suppl. 3, National
Biomedical Research Foundation, Washington, DC.

Gribskov, M., Homyak, M., Edenfield, J., and Eisenberg, D. (1988), ‘‘Profile scanning for three-
dimensional structural patterns in protein sequences,’’ CABIOS, Vol. 4, No. 1, pp. 61-66.

Hawley, D.K., and McClure, W.R. (1983), ‘‘Compilation and analysis of Escherichia coli pro-
moter DNA sequences,’’ Nucleic Acids Research, Vol. 11, No. 8, pp. 2237-2255.

Lipman, D.J. and Pearson, W.R. (1985), ‘‘Rapid and sensitive protein similarity searches,’’ Sci-
ence Vol. 227, pp. 1435-1441.

- 23 -

Miller, J., McLachlan, A.D., and Klug, A. (1985), ‘‘Repetitive zinc-binding domains in the pro-
tein transcription factor IIIA from Xenopus oocytes,’’ EMBO Journal, Vol. 4, No. 6, pp.
1609-1614.

Myers, E.W. (1992), ‘‘Approximate Matching of Network Expressions with Spacers,’’ Techni-
cal Report TR92-5, Dept. of Computer Science, U. of Arizona, Tucson, AZ 85721.

Myers, E.W., and Miller, W. (1989), ‘‘Approximate matching of regular expressions,’’ Bulletin
of Mathematical Biology, Vol. 51, No. 1, pp. 5-37.

Posfai, J., Bhagwat, A.S., Posfai, G., and Roberts, R.J. (1989), ‘‘Predictive motifs derived from
cytosine methyltransferases,’’ Nucleic Acids Research, Vol. 17, No. 7, pp. 2421-2435.

Staden, R. (1988), ‘‘Methods to define and locate patterns of motifs in sequences,’’ CABIOS,
Vol. 4, No. 1, pp. 53-60.

Stoehr, P.J. and Cameron, G.N., (1991) ‘‘The EMBL data library,’’ Nucleic Acids Research,
Vol. 19, Sequences Supplement, pp. 2227-2230

Stormo, G.D. (1990), Consensus Patterns in DNA,’’ Meth. in Enzymology, Vol. 183, pp. 211-
221.

Ukkonen, E. (1985), ‘‘Finding approximate patterns in strings,’’ Journal of Algorithms, Vol. 6,
pp. 132-137.

- 24 -

Appendix A: Quick Reference Guide

A complete grammar for the language A is given in this appendix along with some terse com-
ments and the formal definition of scoring for a consensus symbol. The aim is to give a snapshot
of the entire language and to serve as a quick reminder to the experienced ANREP user. A com-
plete description and an explanation of the syntactic notation used is given in Appendix B. A
postscript file containing the following overview is provided with the software package.

STATEMENTS

spec → stmt* # An ANREP spec is a sequence of statements

stmt → comment comment → ‘#.*\n’

| numdecl numdecl → number id{x} ‘=’ num(x) ‘;’ for x ∈ {int, float}

| alpdecl alpdecl → alphabet id{alp} ‘=’ alpha ‘;’

| score score → score id{score} [‘=’ alpha ‘{’ matdef+ ‘}’] ‘;’

| motdecl motdecl → motif id{motif} [‘{’ id (‘,’ id)* ‘}’] ‘=’ mot ‘;’

| netdecl netdecl → net id{net} [‘{’ id (‘,’ id)* ‘}’] ‘=’ net ‘;’

| search search → search [format] file_id for net ‘;’ format → ‘\(([)̂] |\\.)*\)’

| include include → include file_id ‘;’

| execute execute → execute command ‘;’ command → ‘"([ˆ"] |\\.)*"’

IDENTIFIERS, NUMBERS, SYMBOLS, & ALPHABETS

Command line arguments are passed to ANREP by macro substitu-
tion. Every occurrence of the phrase ’@i’ is replaced by the ith

command line argument, provided the @-sign is not preceded by a
back-slash and i is in range.

id → ‘[a-zA-Z_][a-zA-Z_0-9]*’

file_id → ‘[a-zA-Z0-9_./]+’

symbol → ‘[a-zA-Z] |\\.’

alpha → id{alp} | ‘[’ symbol+ ‘]’

num{int} → id(int) | icon num{float} → id(float) | fcon

icon → int | ‘[+-]’ fcon → int ‘[Ee]’ int | rat [‘[Ee]’ int]

int → ‘[+-]?[0-9]+’ rat → ‘[+-]?([0-9]+\.[0-9]* |\.[0-9]+)’

SCORE DECLARATIONS

matdef → ‘<’ set [‘[.,]’ set] ‘>’ ‘#’ (icon | fcon) ‘;’ # enumerative spec
| c_expr ‘#’ c_expr ‘;’ # functional spec

set → ‘$’ # epsilon / gap symbol
| symbol # singleton set
| ‘[’ (symbol |‘$’)+ ‘]’ # set of symbols including epsilon

c_expr → ‘[ˆ#;]*’ # must be a legal C expression

MOTIFS & NETWORKS

net → net ‘|’ net # alternation (lowest precedence)
| net net # concatenation
| net ‘?’ # zero or one (highest precedence)
| ‘(’ net ‘)’ # parentheses
| ‘{’ mot ‘,’ num ‘}’ # approximate motif match
| ‘<’ num(int) [‘,’ num(int)] ‘>’ # spacer
| ref(net) # net reference

(continued)

- 25 -

mot → mot ‘|’ mot pat → pat ‘|’ pat # alternation (lowest precedence)
| mot mot | pat pat # concatenation
| mot ‘!’ id(score) | pat ‘!’ id(score) # local scoring scheme
| mot ‘:’ num | pat ‘:’ num # positional weight
| mot ‘?’ | pat ‘?’ # zero or one (highest precedence)
| ‘(’ mot ‘)’ | ‘(’ pat ‘)’ # parentheses
| ‘"’ pat ‘"’ | atom # quoted part / atomic symbols
| ref(motif) # motif reference

ref{x} → id(x) [‘{’ param (‘,’ param)* ‘}’] for x ∈ {motif, net}

param → num | id(score) | mot | net

ATOMS

atom → symbol # ASCII symbol
| ‘.’ # wild card
| consensus # consensus symbol

consensus → ‘[’ [‘[>˜<=]’] (literal+ ‘:’ num)* literal+ [‘:’ num] ‘]’

literal → symbol
| ‘+’ # insertion
| ‘-’ # deletion
| ‘ˆ’ # all symbols not listed

CONSENSUS SYMBOL SEMANTICS:

Let A be the set of literals in a consensus symbol α, let C = A −{+, −, ˆ} be the set of symbols in α, and let wx be the weight associated with
literal x . Then the cost vectors for α are defined as follows where f is max for [>...] symbols, min for [<...], and average for [˜...].
For tailored symbols, [=...], the costs are given by the second set of definitions.

Reduction Consensus Symbols:

δ(α, c) =

�
�
�
�
�x ∈ C

f (δ(x , c)wx)
x ∈Σ

f (δ(x , c) (if x ∈ C then wx else w
ˆ
))

otherwise

if ˆ ∈ A

δ(α, ε) =

�
�
�
�
�
�
�−∞

x ∈ C
f (δ(x , ε)wx) w −

x ∈Σ
f (δ(x , ε) (if x ∈ C then wx else w

ˆ
)) w −

otherwise

if − ∈ A and ˆ ∈/ A

if −, ˆ ∈ A

δ(ε, c) =

�
�
�
�
�
�
�−∞

x ∈ C
f (δ(ε, c)wx) w +

x ∈Σ
f (δ(ε, c) (if x ∈ C then wx else w

ˆ
)) w +

otherwise

if − ∈ A and ˆ ∈/ A

if −, ˆ ∈ A

Tailored Consensus Symbols:

δ(α, c) =

�
�
�
�
�−∞

w
ˆ

wc

otherwise
if c ∈/ C and ˆ ∈ A
if c ∈ C

δ(α, ε) =

�
�
�−∞

w −
otherwise
if − ∈ A

δ(ε, c) =

�
�
�−∞

w +
otherwise
if + ∈ A

- 26 -

Appendix B: Language Specification

The ANREP system described in the paper proper has been implemented in the form of a free-format, declarative computer
language, A , for specifying patterns and initiating database searches. The language is strongly typed and allows for hierarchical
and parameterized definition of variables of type number, alphabet, scoring scheme, motif, and network. ANREP provides an
interactive as well as a batch-type environment for A , and it supports libraries of predefined subcomponents.

This appendix serves as the defining document for the language A . It describes the syntax using a modified BNF grammar
and gives a precise statement of the semantic meaning of each construct.

The following notation is used to describe the grammar of A . The syntactic element being defined is listed, followed by a
‘‘→’’ and its definition. Syntactic elements listed on one line need to appear in the same order in the program; alternatives are
separated by ‘‘ | ’’. All keywords (identifiers with reserved meaning) appear in Bold type. Individual terminal symbols are
bracketed by single quotes. When a sequence of symbols appears between single quotes it is to be interpreted as a regular
expression of terminal symbols. The notation for these regular expression is precisely that of the egrep UNIXTM tool. Non-
terminals are printed in italics. A ‘‘+’’ after a syntactic element indicates one or more occurrences of this element, and a ‘‘*’’
means zero or more occurrences. Syntactic elements enclosed in square brackets are optional, i.e. they can appear zero or one
times. Numbers and identifiers in the grammar are followed by a type in curly braces or in parentheses. Curly braces have a
declarative meaning, i.e. the type is being defined, whereas parentheses have an assertive meaning, i.e. the type is required.

A specification (or program) in A consists of a sequence of statements. White spaces (blanks, tabs, and newlines) may
appear anywhere except within keywords, identifiers, and numeric constants. Newlines do terminate only comments; all other
statements are terminated by a semi-colon (‘‘;’’) and may be spread over several lines as per the aesthetic whim of the user.
Comments may appear between any two statements in order to annotate the specification. A comment starts with a pound sign
(‘‘#’’), and terminates at the end of the current line.

spec → stmt*

stmt → comment
| numdecl
| alpdecl
| score
| motdecl
| netdecl
| search
| include
| execute

comment → ‘#.*\n’

Variables & Numbers

Variable names must begin with a letter or an underscore, and may be followed by any number of letters, digits, and underscores.
Variable names are case-sensitive.

id → ‘[a-zA-Z_][a-zA-Z_0-9]*’

Numbers are either integer or floating point quantities. Integers are numbers without a decimal point or exponent. As a special
case, ‘‘+’’ and ‘‘-’’ are interpreted as shorthand for +1 and −1, respectively. Floating point numbers contain a decimal point or
an exponent (or both). Numbers can be assigned to variables via the number declaration statement.

numdecl → number id{x} ‘=’ num(x) ‘;’ where x ∈ {int, float}

num{int} → id(int)
| icon

- 27 -

num{float} → id(float)
| fcon

icon → int
| ‘[+-]’

fcon → int ‘[Ee]’ int
| rat [‘[Ee]’ int]

int → ‘[+-]?[0-9]+’

rat → ‘[+-]?([0-9]+\.[0-9]* |\.[0-9]+)’

Alphabets

Alphabets are sets of symbols, where symbols can be upper or lower case letters (represented by themselves), or any other ASCII
character (represented by a back slash followed by the character itself). The alphabet declaration statement is used to assign
alphabets to variables.

alpdecl → alphabet id{alp} ‘=’ alpha ‘;’

alpha → id{alp}
| ‘[’ symbol+ ‘]’

symbol → ‘[a-zA-Z] |\\.’

Scoring Schemes

ANREP contains the concept of a current scoring scheme, which applies to all motifs that do not have a scoring scheme explicitly
associated with them (see the section on Motifs). Initially, the current scoring scheme is the unitary scoring scheme over the
alphabet of ASCII characters. Scoring schemes are defined and/or made current with the score definition statement.

score → score id{score} ‘=’ alpha ‘{’ matdef+ ‘}’ ‘;’
| score id(score) ‘;’

With the first form of the score statement, an identifier of type scoring scheme is declared, initialized according to the
specification to the right of the equal sign, and made the current scoring scheme. The second form of the score statement
(without the declaration part), simply causes the current scoring scheme to be set to the one specified by the identifier.

matdef → ‘<’ set [‘[.,]’ set] ‘>’ ‘#’ (icon | fcon) ‘;’
| c_expr ‘#’ c_expr ‘;’

set → ‘$’
| symbol
| ‘[’ (symbol | ‘$’)+ ‘]’

c_expr → ‘[ˆ#;]*’

The first (or enumerative) format explicitly specifies which entries are to be set, and their values. A declaration of this form
is interpreted as follows: Let set 1 be the first set of symbols listed inside the angle brackets, and set 2 the second set of symbols
(the dollar sign as a special symbol stands for ε). If set 2 is not present in the declaration, it is assumed to be Σ. Let op be either
’,’ or ’.’ (assumed to be ’,’ if not present), and value the value of the numeric constant to the right of the pound sign. Then, if
op = ’,’, for all a ∈ set 1 and all b ∈ set 2, δ(a , b) = value . If op = ’.’, δ(a , b) = δ(b , a) = value , for all a ∈ set 1 and all b ∈ set 2.

The second (or functional) format uses Boolean conditions to specify the entries to be set. The C expression to the left of the
pound sign is interpreted as a Boolean expression in variables x and y , where x represents the row (first) index and y the column
(second) index into matrix δ. This Boolean expression is then applied to each element of the matrix δ. Each entry for which the
expression evaluates to true (i.e., is not equal to zero), is set to the value of the second C expression (to the right of the pound
sign), which may also be a function of x and y .

- 28 -

Atoms

An atom can be a regular ASCII symbol, the special wild card symbol ‘‘.’’, or a consensus symbol. The wild card symbol
matches any symbol from the current alphabet and does not contribute to the score or length of a motif.

atom → symbol
| ‘.’
| consensus

A consensus symbol is a user-defined atomic element, whose cost vectors are computed from the literals involved in its
definition. Consensus symbols are specified in a syntactic form similar to alphabets:

consensus → ‘[’ [‘[>˜<=]’] (literal+ ‘:’ num)* literal+ [‘:’ num] ‘]’

literal → symbol
| ‘+’
| ‘-’
| ‘ˆ’

The (optional) special symbol following the left square bracket indicates how the cost vectors are to be computed from the
literals and their weights. A ‘‘>’’ stands for a maximum reduction, a ‘‘˜’’ for an average reduction, a ‘‘<’’ for a minimum
reduction, and an ‘‘=’’ means that the specification is to be taken literally — no transformation is applied. A missing special
symbol denotes a symbol class and is equivalent to an explicitly specified maximum reduction. Following the special symbol, all
literals involved in the definition of the consensus symbol are listed. A literal can be either a regular symbol (which must be
defined in the current scoring scheme), or it can be one of the three special symbols ‘‘+’’, ‘‘-’’, and ‘‘ˆ’’, which stand for inser-
tion, deletion, and substitution of all symbols not specified explicitly, respectively. Individual literals as well as groups of literals
can be given a weight by appending a colon and the desired weight.

To describe the computation of the edit costs (cost vectors) for a consensus symbol α, let A be the set of literals between the
square brackets, and let wx be the weight associated with literal x . For example, for [ag:3 t:−1 +], A = {a , g , t , +} and
wa = wg = 3, wt = −1, and w + = 1. In addition, let C = A − {+, −, ˆ}, i.e., the set of all regular symbols in the specification. Substi-
tution, deletion, and insertion costs are then defined for the case of a reduction function f as follows:

δ(α, c) =

�
�
�
�
�x ∈ C

f (δ(x , c)wx)
x ∈Σ
f (δ(x , c) (i f x ∈ C then wx else w

ˆ
))

otherwise

if ˆ ∈ A

δ(α, ε) =

�
�
�
�
�
�
�

−∞
x ∈ C
f (δ(x , ε)wx)w −

x ∈Σ
f (δ(x , ε) (i f x ∈ C then wx else w

ˆ
)) w −

otherwise

if − ∈ A and ˆ ∈/ A

if −,ˆ ∈ A

δ(ε, c) =

�
�
�
�
�
�
�

−∞
x ∈ C
f (δ(ε, c)wx) w +

x ∈Σ
f (δ(ε, c) (i f x ∈ C then wx else w

ˆ
)) w +

otherwise

if − ∈ A and ˆ ∈/ A

if −, ˆ ∈ A

In the case of a tailored consensus symbol, these costs are defined as:

δ(α, c) =

�
�
�
�
�−∞

w
ˆ

wc

otherwise
if c ∈/ C and ˆ ∈ A
if c ∈ C

δ(α, ε) =

�
�
�−∞

w −
otherwise
if − ∈ A

- 29 -

δ(ε, c) =

�
�
�−∞

w +
otherwise
if + ∈ A

Motifs

Motifs are regular expressions built from atoms and variables of type motif. Motifs are assigned to variables via the motif
declaration statement. A motif declaration may be parameterized. Parameters serve as placeholders for actual values that are
filled in when the motif is ‘‘called’’, or referenced.

motdecl → motif id{motif} [‘{’ id (‘,’ id)* ‘}’] ‘=’ mot ‘;’

Motif regular expressions are built from atoms and references to other variables of type motif, using the three operators alter-
nation (‘‘ | ’’), concatenation (juxtaposition), and optionality (‘‘?’’). A particular scoring scheme can be applied to a specific
motif by appending an exclamation mark and an identifier of type scoring scheme to the motif. To express the importance of a
particular motif relative to other motifs in the same pattern, a motif may be followed by a colon and a weight. Nested weights
accumulate multiplicatively. The order of precedence is ‘‘ | ’’ (lowest), concatenation, and ‘‘!’’, ‘‘:’’, and ‘‘?’’ (highest).
Parentheses may be used for grouping and to force a different order of precedence. In order to resolve the possible syntactic con-
fusion between an identifier and a sequence of regular symbols, atoms must be enclosed in double quotes (‘‘"’’). Rather than
suffer the burden of having to quote each atom, one can quote an entire expression, as long as it does not involve a motif refer-
ence. Often, this means that the entire motif may be placed in a single pair of quotes. In order to describe this formally, a mot
below is a regular expression of motif references and pats enclosed in quotes. A pat, in turn is a regular expression of atoms.
The parallel rules a given side-by-side to help see the differences.

mot → mot ‘|’ mot pat → pat ‘|’ pat
| mot mot | pat pat
| mot ‘!’ id(score) | pat ‘!’ id(score)
| mot ‘:’ num | pat ‘:’ num
| mot ‘?’ | pat ‘?’
| ‘(’ mot ‘)’ | ‘(’ pat ‘)’
| ‘"’ pat ‘"’ | atom
| ref(motif)

The actual parameters used in a motif reference can be numbers, motifs, networks, or scoring scheme identifiers. The type of
the actual parameter must match the type of the formal parameter in the motif declaration. The type of the formal is inferred
from its use in the relevant declaration and must be consistent throughout. Note that it then follows that in the case of motifs, it is
actually not possible for a parameter to be of type network. However, we include the more general definition so that it need not
be repeated for the treatment of networks below.

ref{x} → id(x) [‘{’ param (‘,’ param)* ‘}’] where x ∈ {motif, net}

param → num | id(score) | mot | net

Networks

A variable of type network is declared and assigned to with the network declaration statement. Like a motif declaration, a net-
work declaration may be parameterized.

netdecl → net id{net} [‘{’ id (‘,’ id)* ‘}’] ‘=’ net ‘;’

Network regular expressions are built from approximate matches to motifs, spacers, and references to other networks, using
the three operators (in order of increasing precedence) alternation (‘‘ | ’’), concatenation, and optionality (‘‘?’’). Parentheses may
be used for grouping and to force a different order of precedence. An approximate match to a motif is a motif preceded by an
opening curly brace, followed by a comma, a threshold, and a closing curly brace. A spacer is an integer or a pair of integers
enclosed in angle-brackets.

- 30 -

net → net ‘|’ net
| net net
| net ‘?’
| ‘(’ net ‘)’
| apmat
| spacer
| ref(net)

apmat → ‘{’ mot ‘,’ num ‘}’

spacer | ‘<’ num(int) [‘,’ num(int)] ‘>’

A motif in a network specification must match with a score greater than or equal to the specified threshold during the search
of a database, in order for the whole network to match. The score of matching a motif to a target sequence is the score of the
highest scoring alignment between some sequence denoted by the motif and the target sequence, divided by the length of the
motif sequence used to make the alignment. A spacer < i , j > between two networks M and N serves as a separator. Intuitively,
it matches any sequence of symbols whose length is between i and j . Assuming both i and j are positive, it asserts that the right
end of a match to network M must be at least i and at most j symbols to the right of a match to the left end of network N . How-
ever, spacers may also contain negative numbers and these are interpreted as distances to the left. The notation < i > is accepted
as shorthand for < i , i >. Spacers at the beginning or the end of a network are ignored.

Searching

A search for a network over a database is initiated with the search statement. The file identifier is the name of the file containing
the database. The optional format is a string between parentheses that is passed to the I/O-interface routine Start_scan just
prior to the start of the search. See the section "System and Methods" for a precise description of the I/O library and supported
formats. ANREP currently understands the two formats, PLAIN and FASTA, where the former is the default when a format is
not given.

search → search [format] file_id for net ‘;’

format → ‘\(([)̂] |\\.)*\)’

file_id → ‘[a-zA-Z0-9_./]+’

The database is searched according to the algorithms described previously. All matches to the network specification con-
tained in the database are reported, subject to two restrictions: (1) The maximum length of a match is limited by the size of an
internal buffer, and (2), if the overlap between two adjacent matches exceeds some percentage of the total span of the union of
both matches, only the first match found is reported. However, both the maximum length of a match as well as the overlap per-
centage are compilation constants. They can easily be adjusted to suit any particular need.

Libraries and Command-Line Arguments

To facilitate libraries of predefined components, the include statement is provided. When an include statement is encountered,
the contents of the file specified by the file identifier are read in and processed as if they were typed on-line — with one excep-
tion: if an error is encountered, processing skips everything following the offending statement until the end of the included file.
Include statements may be nested.

include → include file_id ‘;’

A generalization of the include statement is the execute statement, which passes the command string between double-quotes
to the operating system as if it had been typed at a terminal. The standard output produced by executing the command is captured
and processed by ANREP exactly as if it had been included. For example, the statement, execute "cat foo", is equivalent
to, include foo.

execute → execute command ‘;’

command → ‘"([ˆ"] |\\.)*"’

- 31 -

At the command-line level of the operating system one invokes ANREP by typing anrep followed by a number of
command-line arguments in the usual UNIX convention. These arguments are passed to ANREP as strings. Any occurrence
within the A specification read from the standard input of a phrase of the form @i where i is an integer, is assumed to be a refer-
ence to the i th command-line argument and that string replaces the phrase @i. Such an argument reference may occur anywhere
in a specification, provided the @-sign is not preceded by a backslash and there is an i th command-line argument.

- 32 -

