Toward Simplifying and Accurately Formulating
Fragment Assembly

Eugene W. Myers*

Abstract. The fragment assembly problem is that of reconstructing a DNA
sequence from a collection of randomly sampled fragments. Traditionally the
objective of this problem has been to produce the shortest string that con-
tains all the fragments as substrings, but in the case of repetitive target
sequences this objective produces answers that are overcompressed. In this
paper, the problem is reformulated as one of finding a maximum-likelihood
reconstruction with respect to the 2-sided Kolmogorov-Smirnov statistic, and
it is argued that this is a better formulation of the problem. Next the frag-
ment assembly problem is recast in graph-theoretic terms as one of finding
a non-cyclic subgraph with certain properties and the objectives of being
shortest or maximally-likely are also recast in this framework. Finally, a se-
ries of graph reduction transformations are given that dramatically reduce
the size of the graph to be explored in practical instances of the problem. This
reduction is very important as the underlying problems are NP-hard. In prac-
tice, the transformed problems are so small that simple branch-and-bound
algorithms successfully solve them, thus permitting auxiliary experimental
information to be taken into account in the form of overlap, orientation, and
distance constraints.
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1 Introduction

In the mid 1970’s experimental procedures were devised [SNC-77, MaG-77] that
produced a ladder-like pattern on a permeable gel, permitting one to list, in order,
the first 200-300 nucleotides of a DNA strand. These gel-electrophoretic procedures
have since improved so that with great care one can now interpret upwards of the first
1000 nucleotides of a sample, but the length of such a “read” will always be limited
by the resolution of the images. In order to determine the sequence of much longer
segments of DNA | Sanger et al. [SCH-82] devised what is known today as the shotgun
strategy: sample fragments as randomly as possible from the target sequence and
then read as much as possible of the initial sequence of each of these fragments via
gel-electrophoresis. In such an experiment one should clearly sample fragments whose
length is longer than the maximum expected length of a read. Provided that enough
fragments are sequenced and their sampling is sufficiently random across the target,
one then expects to be able to determine the target by finding sequence overlaps
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among the reads of fragments that were sampled from overlapping stretches. The
essential and most difficult aspect of this computational problem is to determine a
layout or arrangement of the fragment reads that is most consistent with the overlaps
found between them. The difficulty of this already NP-hard problem is compounded
by the fact that (1) there is a low level of error, typically 1 to 5 per cent, in the
experimentally determined fragment reads, (2) DNA is a duplex and so the reported
fragment reads could be from either strand of the duplex, and (3) if insufficient
sampling has occurred or there is a strong biological bias in the sampling, then not
all of the target will necessarily be represented in the fragment population.

This last problem becomes progressively more acute just on the basis of statistical
considerations [LaW-88] as the ratio of the length of the target to the length of the
reads increases. While read length has increased some in the last decade, the desire
of experimentalists to sequence ever larger stretches has lead to ratios where one
does not usually reach complete coverage after having sequenced an amount of data
equal to four to six times that of the target. To circumvent this, experimentalists
then use more expensive directed sampling methods to collect fragments that fill the
gaps in the target. Other approaches that ameliorate this coverage problem include,
collecting larger fragments and reading both ends of each fragment (effectively giving
aread of twice the length), or selectively collecting longer reads of fragments adjacent
to the gaps using better (but more expensive) technology. There is the possibility of
selecting all the fragments in a directed fashion so that the problems of sampling and
determining a layout disappear. But as yet these methods incur greater cost in terms
of reagents and time, and have not been as amenable to the design of assembly-line
procedures. Thus the predominant mode of large scale sequencing as of the present
time is what we term hybrid shotgun sequencing: a combination of predominantly
randomly sampled data with some additional directed components.

Rather than design different algorithms for each hybrid strategy, we find it prefer-
able to think of and design algorithms that are capable of solving a “pure” shotgun
problem subject to a collection of overlap, orientation, and distance constraints that
model the additional information provided by the directed components of the strat-
egy. We do not address such a “shotgun-with-constraints” problem in this paper,
but we raise it here because it points out that simpler or better algorithms for the
“pure” problem are required if there is to be any hope of solving these more difficult
constraint problems that are even further complicated by the fact that typically 10%
of the constraints are in fact erroneous. The simplification strategy presented in the
last section of this paper has such potential.

Besides hybrid strategies, the other major consequence of recent trends in the
scale and scope of DNA sequencing activities is that it is now quite commonplace
for the target sequences to contain repetitive elements. For example, in the T-cell
receptor locus of humans there is a 5-fold repeat of a trypsinogen gene that is 4kb
(kilo-bases) long and varies 5-10% between copies. Three of these were close enough
together that they appeared in a single shotgun-sequenced cosmid target[RoH-94].
Such large scale repeats are problematic for shotgun approaches as reads with unique
portions outside the repeat cannot span it. Smaller elements such as palindromic
Alu’s of length approximately 300, do not share this feature but still are problematic
as they can constitute up to 50-60% of the target sequence [Bel-92, Iri-94]. Finally, in
telomeric and centromeric regions, micro-satellite repeats of the form 2", where the



repeated string « is three to six bases long and n is very large, are common [Bel-92].
The problem of repeats has only become acute in recent years because researchers
are beginning to sequence higher organisms that have a greater tendency towards
such sequence, and because with increasing target length, there is greater chance
of a large scale repeat being within the target. The work in this paper specifically
addresses this issue where in the next section it formulates the objective of the
fragment assembly problem in a way that is correct for repetitive DNA, and further
develops this criterion into the simplification strategy presented in its final section.

Proceeding formally, this paper considers the “pure” version of shotgun sequenc-
ing formulated as follows. The fragment assembly problem is to determine the se-
quence of bases in an unknown target DNA duplex S of length G. Conceptually, S is
a string over the four letter alphabet A ;C,G,T. In shotgun sequencing, an investigator
samples the target S, say I times, obtaining in each sampling a fragment read f; of
average length L that is a substring of S or its dyadic complement, and that has been
perturbed by the introduction of ¢|f;|-or-fewer differences. The fraction ¢ € [0, 1]
models the mazimum error rate of the sequencing process and is typically about
5-10%. The dyadic complement f¢ of a sequence f represents the strand complemen-
tary to f when it is in duplex DNA. Formally, (¢1as...a,)¢ = we(ay,)...we(az)we(ay)
where we(A) = T, we(T) = A, we(C) = G, and we(G) = C. We let N = FL denote
the total amount of sequence data collected by the investigator, and let ¢ = N/G
denote the average coverage or sampling frequency of each base. With current tech-
nology the average fragment read length L is in the range 300-500 and investigators
are shotgun sequencing strings .S of length up to 50,000. A typical coverage for such
sequencing projects is ¢ = 6, requiring that ' = ¢G/L = 1000 fragments be sampled
if one conservatively assumes L = 300.

2 A New Formulation of Fragment Assembly

Traditionally, the fragment assembly problem has been phrased as one of finding a
shortest common superstring (SCS) of the fragment reads within error rate ¢, i.e., a
shortest string R such that for every fragment read f;, there is a substring R[sp;, ep;]
that is not greater than ¢|f;| differences from either f; or f;°. But for problems in-
volving repetitive DNA sequence this criterion clearly over-compresses repeats that
are larger than L and so is not a correct formulation either in theory or practice.
Figure 1 gives an example of a target for which such an over-compression occurs.
While it is certainly true that knowing an SCS implies the original target DNA du-
plex is known in the sense of learning theory [Li-90], the plain fact is that in practice
SCS-based algorithms do not correctly handle repetitive sequence (e.g. [Kec-91]).
Note that R may be the concatenation of digjoint “contigs” of mutually overlapping
fragments. In Figure 1 this is due to incorrect assembly, but more generally, it is due
to the fact there are gaps in the sampling coverage of the original target.

In Figure 1, the fact that the solution has over-compressed the repeated part
is clear by the unusually high coverage of that part of the solution. This suggests
that we might avoid this pitfall by formulating the fragment assembly problem in
terms of finding the sequence that maximizes the likelihood of the hypothesis that
its fragments were sampled over the length of the target with a given distribution.
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Fig. 1. An over-compressed SCS-based assembly.

The probability density function of the Kolmogorov-Smirnov test statistic for the
goodness-of-fit between an observed sample and a hypothesized source distribution
gives us a suitable likelihood function. We will assume later in this paper that the
source distribution is the uniform distribution, but this is not essential to our formu-
lation as the Kolmogorov-Smirnov test statistic is distribution-free. We choose the
uniform distribution because it is indeed the desire of experimentalists to approxi-
mate this assumption with sequence-independent methods of fragmentation such as
sonication.

Proceeding formally, let a particular solution be described by a reconstruction
string R, and a layout consisting of F' pairs of integers, (Si’ei)ie[l,F]’ where 1 <
si,e; < |R|. The i*" pair of the layout indicates that f; is a perturbed copy of the
substring R[s;,e;] if s; < e;, or of Rle;, s;]¢ otherwise. Thus the order of s; and e;
encode the orientation of the fragment read in the layout, that is, whether f; was
sampled from R or its complement strand. We say that the start-point sp; of read f;
in the layout is min(s;, e;) and its end-point ep; is maxz(s;,e;). In order to be e-valid
a layout must satisfy the following two properties: (a) each read f; can be aligned
to its assigned substring with not more than | f;| differences, and (b) every symbol
of R must be covered by some read, i.e. U;[sp;, ep;] = [1, | R|]. Our potential solution
space is thus the set of all e-layouts, and our problem is to pick one as “best”.

Observe that given a layout, we have an observed distribution Dgps () of fragment
read start points:

Dops(x) = [{fi : spi < x}|/F
that is the proportion of reads starting before position . We let the domain of the
distribution be 1 < # < G’ 4+ 1 where G’ = G — L because a fragment of length L
cannot begin at a position greater than G’+12. Given a known continuous source dis-
tribution Dy, () for the sampling process, the 2-sided Kolmogorov-Smirnov statistic
[Kol-33, Smi-41] is the maximum deviation § = max1<e<c/41|Dobs (£) — Dsre(2)| be-
tween the source and observed distributions. The probability distribution Prag_g(d)

2 This approzimation effectively dismisses boundary effects. It suffices in practice as L is

1% or less of G.



= Pr(z < §) of this statistic is independent of that of Dy, and the following analytic
formula [Kol-33, Bir-52] permits its computation for any F' and d:
Ftoon
PPQK_s(J) = F_FH HF(jJ +1, LF(jJ + 1]
where H[i, j] is the entry in row i and column j of the F'* power of the p x p
matrix:
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where p=2|Fd|+1and k =1 — (Fd — | Fd]).

One way to define our objective in maximum-likelihood terms would be to score
each e-layout according to the value of the probability density function d Prog_g(d)/dd
which is unimodal with a peak at §,,4, > 0. However, such an approach would
be computationally cumbersome due to the difficulty of computing this likelihood
function at a given d. Keeping in mind that we are not testing the hypothesis that
the fragments were sampled with distribution Dy,., but rather are seeking e-layouts
that conform to this fact, it would be rare to observe layouts whose § is less than
Omaz- Thus we take the liberty of simplifying matters considerably by taking as
our objective the minimization of §. In essence, we are eliminating layouts with
large  that are unlikely to satisfy the null-hypothesis that {sp;} was sampled from
Ds,c. Indeed, the algorithms that follow are capable of generating all layouts whose
goodness-of-fit is within a certain level of significance.

A subtlety not yet addressed is that a layout and its reconstruction do not nec-
essarily cover all of the original target, i.e., it may be that |R| is a bit less than G
because with some positive probability fragments were not sampled from either end
of the target. Alternatively, while sp;, the start-point of the first fragment, is 1 from
the view of R, it is not necessarily the first position in the target. In the absence
of any other information, we assume that we are free to arbitrarily place R with
respect to the target and thus shift D, and Ds,. with respect to one another in
order to minimize the deviation. That is, we use as our optimization objective the
relative deviation

d =ming (Mmazi<e<q'+1|Dobs () — Dype(x — a)|)

While this invalidates the use of § as a test statistic, it does not invalidate its use
here as an objective function. Figure 2 illustrates these concepts for the case where
Dygrce is the uniform distribution. At this point, we are now ready to formulate the
fragment assembly problem as follows:
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Fig. 2. Deviation between source and observed start point distributions.

Fragment Assembly: Given fragment reads f; and maximum error rate ¢ € [0, 1]
find a reconstruction R and e-valid layout of the reads whose observed distribution
of fragment read start points, Dy, has the the minimum relative deviation from
Dsrc~

Note carefully that the problem is phrased as finding the maximum likelihood
e-valid layout. Thus we are still constraining the space of solutions to “noisy” su-
perstrings of the fragment reads, i.e., reads can only overlap in a proposed layout if
they agree within e-or-less errors along the length of their overlap. Indeed, later in
the paper, our likelihood-based objective is only used to select among the few com-
peting layouts that remain after all “unique” overlaps are utilized. The point is that
rather than evaluating layouts based on the length of their reconstruction, we seek
the ones that are most consistent with the fact that the start points of fragments
were chosen across the length of the target with distribution Dj,.. Indeed, it is our
initial experience that our new criterion only produces different results from SCS
in repetitive regions which is exactly where prior work fails. The analytic formula
for Prok.g confirms that our criterion is not limited to asymptotically large sample
sizes, but applies to a sample of any finite size F'. Finally, it should also be em-
phasized that Ds,. can be any distribution; in this sense the distribution, Prox.g(d),
of the Kolmogorov-Smirnov statistic d is distribution-free. Thus if one has more re-
fined information about the a prior: distribution of fragments than one can use this
knowledge in our formulation.

In summary, viewing the fragment assembly problem as a “noisy” shortest com-
mon superstring problem is an appeal to parsimony: one seeks the explanation that is
shortest. While parsimony is a much used criterion in computational biology, it fails
regularly in practice on fragment assembly problems involving repetitive sequence.
Our alternative formulation of finding a maximum-likelihood solution is also well-
founded theoretically and in preliminary trials appears to produce better results in
practice3.

? One could imagine other goodness-of-fit measures such as the maximum deviation from
average coverage ¢, or the area of deviation between D.,. and Dos, or by using a X2‘



3 A Graph-Theoretic View of Fragment Assembly

A common approach to fragment assembly, advocated by several authors [PSU-84,
Kec-91, Hua-92], divides the problem, both conceptually and computationally, into
three phases: overlap, layout, and consensus. In the overlap phase, one compares
every fragment read against every other read (in both orientations) in search of
approximate overlaps between reads. These overlaps are recorded and capture all of
the possible relationships between the fragment reads. The layout phase then selects
a subset of these pairwise overlaps that determines the location of every fragment
read with respect to every other. In essence, the layout phase determines the pairs
(si, e;) discussed in the previous section to within an accuracy that is dependent
on . Finally, the consensus phase forms a consensus-measure multi-alignment in all
regions where the coverage is two or greater in order to select a consensus character
for each position resulting in the ultimate reconstruction R. Note that it is only until
R has been computed in the last phase that the exact values for the pairs (s;, ¢;) of
a layout are known.

The focus of this paper is on the middle, layout phase. Consequently, we must
introduce the necessary preliminaries for the overlap phase, but will not discuss con-
sensus further. For more details on the entire process see [KeM-95]. In our concep-
tion, the overlap phase is an “all-against-all” variation of sequence comparison that
compares every fragment read against every other read and its dyadic complement
in search of approximate overlaps between them that are statistically significant at
a level settable by the user but usually with a probability of at most 1-in-10° of
occurring by chance (see [Mye-86, Kec-91, KeM-95]). Given a maximum error rate
€, the only alignments between overlapped portions of two reads A and B that need
be detected involve not more than k = ¢(|A| + | B|) differences.

We view the overlap phase as producing an overlap graph G that models all
the approximate overlaps reported by an algorithm that performs the comparisons
described in the previous paragraph. Each fragment read is modeled as a vertex
and each reported overlap as an edge. The overlap graph may be a multi-graph
in that there may be more than one edge between a pair of reads A and B. This
may result from there being more than one significant locally optimal overlap be-
tween them, but more often it is because there is a significant overlap between A
and B, and another between A and B°. In order to accurately model layouts, the
overlap graph must model more than the two reads m.A and 7.B involved in an
overlap m and so must be more than an undirected multi-graph. The convention is
adopted that an overlap is always described from the perspective of m.A being in
the forward orientation (i.e., uncomplemented) and that of m.B being variable. The
complete specification of an overlap = is achieved by specifying (a) the substrings
m.A[m.sa,m.ea] and w.B[r.sp, m.ep] of each read involved in the overlap, and (b)
a list m. A of the positions of the unaligned symbols of each read in the alignment
of the overlap. Since m is described from the perspective of 7. A, it is always the
case that m.s4 < m.e4, but as when specifying a layout, m.sp > m.ep indicates that

based hypothesis test. We choose Kolmogorov-Smirnov because it is easy to compute,
consistent, and distribution-free. An empirical test and comparison of alternatives is
beyond the scope of this paper. Our aim here is to rigorously propose some alternative
to parsimony as a layout optimization criterion that accounts for repetitive sequence.



the overlap is between m. A[r.s4,7.€a] and 7. B[m.eg,m.sg]°. 7. A is often called a

A-encoding of an alignment and while there are other ways to encode an alignment,
the A-encoding is the most space efficient in our context as € is rarely more than
10%. While 7. A is not needed by the layout phase, the orientation of the B-read
and the substrings involved in an overlap are important to the layout phase and the
range of possibilities is partitioned into four categories of edges shown in Figure 3.

Edge Overlap Characterization
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Fig. 3. Taxonomy of Overlap Types.

A containment edge models the situation where all of 7. B is aligned to a substring
of m. A, and is denoted by a directed, double-line edge from 7.A to m.B. All other
edges are dovetail edges where a proper prefix or suffix of one read is aligned to a
proper prefix or suffix of the other. Each dovetail edge is denoted by a bi-directed,
single-line edge. The edge is bi-directed in that there is an arrowhead at each end
of the edge and the direction of each arrowhead is a significant part of the model.
When 7.B is in the same orientation as m.A we have a regular dovetail edge where
a suffix of m.A overlaps a prefix of m.B and the arrowhead at 7. A is directed out
and the arrowhead at 7.B is directed in. When 7.B is in the opposite orientation
the overlap can involve either a prefix or a suffix of 7. B. For a prefir dovetail edge,
the arrowheads are directed into both 7.B and 7. A. For a suffir dovetail edge, both
arrowheads are directed outward. We leave it to the reader to verify that every
overlap falls into exactly one of these categories when given the freedom to choose
which read is the A-read. The essential property of a dovetail edge is that when one
of its arrowheads is directed into a read the prefix of the read is in the overlap, and
when directed out, the suffix of the read is in the overlap.

To sum up to this point, the result of the overlap phase is the construction of
an overlap graph G that is a bi-directed, multi-graph of containment and dovetail
edges. Each edge/overlap is further annotated with the exact substrings involved in
the overlap’s alignment and its A-encoding. The question now at hand is how to
describe the class of e-valid layouts in terms of this graph-theoretic construction.
To this end let the dovetail in-degree, dove;, (f), of a vertex f be the number of
dovetail arrowheads directed into it, and let cont;,(f), its containment in-degree
be the number of containment arrowheads directed into it. Similarly, define the
outdegrees, doveyy:(f) and contoy:(f).



Lemma 1 [Kec-91]: Every e-valid layout is modeled by a non-cyclic subgraph of
G that satisfies (a) dovein (f), doveout(f), contin(f) < 1, and (b) cont;, (f) = 1 =
dovein (f) = doveoy: (f) = 0.

Proof: As a first step, sequentially remove contained fragment reads from the layout
and place in the initially empty model a containment edge that is from a read still
in the layout to the read being removed. Such a containment edge must exist in G
as the layout is e-valid. The result is a forest of containment trees and a layout in
which all remaining reads have only dovetail overlaps between them. Note that the
layout may consist of different connected components (modeling the fact that the
reads do not cover the original target) called contigs. Certainly the reads remaining
in each contig can be ordered from left to right according to their start points. Add
to the model the dovetail edges between consecutive reads in this ordering and by
the construction of arrowhead directions (i.e., arrowhead in iff a prefix, arrowhead
out iff a suffix), we have a simple path of dovetail edges for each contig satisfying the
dovetail-degree constraints. Again, all these dovetail edges must exist in G (except
when the reads don’t overlap in the layout) as the layout is e-valid. Finally, property
(b) is true as the contained reads were removed from consideration in the first
step. O
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Fig.4. D.P. Framework for a Layout and Its Start-Points.

We call a subgraph satisfying the conclusion of Lemma 1 a dovetail path framework
or more briefly a d.p. framework, because it consists of one or more dovetail paths
(subject to in/out-degree constraints) that form frames off of which hang trees of
containment edges. In what follows, we will generally just focus on a given connected
component or contig, with the understanding that the discussion applies to each con-



tig of the d.p. framework. Lemma 1 guarantees that in order to find a reconstruction
and accompanying e-valid layout satisfying some optimization criterion, it suffices
to examine only the space of d.p. frameworks. Figure 4 shows a layout and its cor-
responding d.p. framework. Note that more than one d.p. framework can model a
given layout.

While Lemma 1 correctly restricts the layout problem to the consideration of
special spanning forests of G, it is unfortunately not a tight characterization of all
e-valid layouts. That is, a d.p. framework over an overlap graph G built at error-
rate ¢ does not necessarily lead to the construction, in the consensus phase of the
computation, of a reconstruction R that confirms the layout to be e-valid. Moreover,
while the positional relationships between the fragment reads is nominally fixed by
the d.p. framework, the precise intervals (s;,e;) of each read in the layout is not
known until the third phase is completed. In essence, the difficulty is that a d.p.
framework is only an approximation to the final result of the computation. In part
this issue was addressed carefully in [Kec-91] where it is shown that the layout
corresponding to a d.p. framework is no worse than 2¢/(1 — ¢)-valid and that the
lengths and positions implied by the d.p. framework (to be introduced) are off by
no more than €. These worst-case bounds assume that ¢ is small and that errors
are uniformly distributed across overlaps. While not proven here we further contend
that from a probabilistic point of view, the mean deviation between the the final
positions and those of the d.p. framework is 0, and that the layouts modeled by
d.p. frameworks are valid at mean rates very close to €. Moreover, in practice the
issue of the rate of validity is usually mute since ¢ is set to the mazimum error rate,
whereas the mean error rate in the overlaps of G are significantly smaller, e.g., a 10%
maximum versus a 2% average. Hence for our current purposes, we will assume that
the low-level “noise” in the fragment read data is an annoyance small enough that
it does not affect the validity of the estimates on length, position, and error-rate of
the layout and reconstruction resulting from a given d.p. framework?.

With this assumption in hand we now turn to estimating the start positions of
every fragment in the layout that will result from a given contig of a d.p. framework
by considering the layout that would result if one assumed € = 0. A formal descrip-
tion of the desired start-points is greatly simplified with some additional notation.

Suppose fég is an edge in G. Let 7.s; denoted m.s4 if 7.A = g and 7.sp other-
wise. Similarly define m.ey, .55, and m.e; so that we need not struggle with which
fragment is playing the role of the A-fragment in the encoding of 7. Next let m.lft,
= min(m.sy, m.ey) and let m.rgt, = maz(m.sy, m.ey) be the ordered delimiters of g’s
overlap substring, i.e., g[m.lft,, m.rgt,]. Finally, let m.hang, = [[1, |g]] = [=.lft,, 7.79t,]|
be the number of symbols in g not in the overlap, and let m.suf, be true iff the
overlap substring of ¢ is a suffix of g, i.e., m.rgt, = |g]- Note that for dovetail edges,
m.sufy 1s true if and only if the arrowhead at g is directed away from g. Thus 7.suf,
effectively denotes the direction of the arrowhead of 7 at g.

Now suppose that a contig of a d.p. framework has as its dovetail path the

Tpo
sequence of reads and edges flngzgfg e ﬁlfn. Let sp; denote our start point
approximation for read f; and let fwd; be true iff f; occurs in the forward (i.e.,

* Note however, that this “noise” is a crucial feature for the overlap and consensus phases
of assembly where it cannot be treated cavalierly.
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uncomplemented) orientation in the layout. Directly from the definitions of the edges
m; 1t follows that:
sp1 =1
fwdy = m.sufy,
and for 7 > 1:
sp; = spi—1 + mi_1.hang;,_,
fwd; = —mi_q.sufy,.

3

To place the contained reads of a d.p. framework, suppose that géf where f is
contained in g whose orientation fwd, and start point sp, are known. Because g is
the containing read it must be that m.A = g by convention and it follows that:

_ T.SA if fwd,
Pr = spgt { |g| — m.ea otherwise

_ Jfuwd, ifmsp <mep
Judy = {ﬂfwdg otherwise

Let the set of start points and orientations so computed constitute the stick layout
of the given d.p. framework.

Using the criterion of the previous section, the fragment assembly problem is
equivalent to finding the d.p. framework whose stick layout minimizes the relative
2-sided Kolmogorov-Smirnov statistic 4. Figure 4 illustrates the start-point positions
for a given d.p. framework. Suppose that sp; < sps < --- < spp is the ordered set
of start points in a stick layout including those of contained fragment reads. Let the
uniform deviation X of a stick layout be:

1 ) Sp; . i Sp; 1
A= (m‘wlSiSF(f = o) —minici<r( — &) f)
Assuming that the source distribution is the uniform distribution, Lemma 2 shows
that a stick layout of minimum uniform deviation maximizes likelihood in the sense
of the 2-sided Kolmogorov-Smirnov statistic.

Lemma 2: If fragment reads are uniformly sampled from the target then a d.p.
framework whose stick layout has minimal uniform deviation A results in a recon-
struction whose layout has minimum relative deviation 4.

Proof: All that need be shown is that the uniform deviation A of a stick layout is
indeed the relative deviation § of the observed and uniform distributions discussed
in the previous section on the 2-sided Kolmogorov-Smirnov statistic. First observe
that
maz1<e<G'+1|Dobs (2) — Duni(z — a)| =
i sp; — @ spi—a  1—1
mazx <m‘”fl$i§F(f - T) ; mal‘lgigp(T -7 ))

by the definitions of the distributions and because the extremes must occur at the
“corners” of the step-function D,s. But by algebra this is just:

i Spi a ) t—1  sp; a
max | mazi<i<r(5 — =) — o —mlmgigF(T — 5) + o
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Thus it follows that the optimum choice of the shift factor a is halfway between the
maz and the mun giving the formula for the deviation of a stick layout presented
above. ad

We conclude this section with a description of the objective for d.p. frameworks
that results in a shortest reconstruction. Let the length of an overlap 7, length(r),
be (|m.s4 — m.ea| + |m.sp — m.ep|)/2, the average length of the two overlapping
substrings. Let the weight of a d.p. framework be the sum of the lengths of its edges.
The following result was first proved independently by Tarhio & Ukkonen and Turner
for the case where € = 0. Thus for sufficiently small € it is true that:

Lemma 3 [TaU-88, Tur-89]: A maximum-weight d.p. framework results in a
reconstruction of minimum length.

Proof: First note that by the estimation of positions above, the length of the recon-
struction for a given d.p. framework is approximately sp, + | f,| where f, is the last
fragment read in the dovetail path of the framework. But by unwinding the recursive
definition of sp, this is simply:

E?:_llm.han_gfz + | fal

Finally, using the facts that (a) m;.hangy, = | f;|—length(m;), and (b) length(m) ~ |g|
when 7 is a containment edge and ¢ is the contained fragment, it follows that the
above equals:

Zilfl — Zrlength(m)

But the second summation is the weight of the d.p. framework and the first is
constant. Thus maximizing weight minimizes length. ad

4 Simplifying the Layout Problem

While we have described criteria for determining layouts that are shortest or have
minimum relative d, we have yet to describe effective algorithms for finding the ap-
propriate d.p. frameworks. Typical overlap graphs involve up to 1000 fragment reads
and so represent formidable instances of the NP-complete combinatorial problems
involved [Kec-91, KeM-95]. We proceed here to detail a series of reductions to the
overlap graph that reduce the number of edges and vertices without changing the
space of potential solutions. The intuition is to assemble all portions of the prob-
lem that join in only one unique way, and then deal with the clearly delineated
combinatorial choices that remain in the reduced chunk graph.

Consider then the following three transformations illustrated in Figure 5. The
transformations are applied independently and in the order given:

1. Contained Read Removal: Every fragment read that is contained by another is
removed from G along with all edges incident to it. A list of these reads is stored
so that they may be reintroduced later into a tentative layout. Call the reduced
graph G; and note that all remaining edges are dovetail edges.
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After Step 1:

I

o o
After Step 2:
oo
After Step 3: > 4
f I /Chunk
) 2 4D
Chunk Graph

Fig. 5. Collapsing an Overlap Graph.

2. Transitive Edge Removal: If fég\;h and féh are mutually consistent overlaps
among reads f, g, and h, then the edge for 7 is removed. Informally overlaps are
mutually consistent if the overlap between f and h implied by the concatenation
of the alignments 7 and 7' is the same as that of = to within error rate ¢, i.e.
T =, Tor1'. A simple, position-based formulation that we have found sufficient

for practical purposes is:
T.suf, # 1'.suf,
m.sufy = T.suf;
m.suf, = T.suf)
T.hangs + 7'.hang, € T.hangy £ (¢ -length(m) + a)
T.hangg, + 7' .hang, € m.hang, £ (¢ -length(m) + a)
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where « is a small constant that helps capture fluctuations in the distribution of
errors when the overlap length of 7 is small. Choosing « to be 3 is generous in
practice. If desired, a more stringent definition of consistency could be developed
around the actual alignments encoded in 7. A, 7.4, and /. A%, Call the resulting

graph Gs.

3. Unique-Join Collapsing: If there is an edge f 2 g such that for every other edge

z = [ adjacent to f, m.suf; # T.suf;, and for every other edge z = g adjacent
to g, m.suf, + T.suf,, then collapse f and ¢ into a single vertex representing the
contig of f overlapped to g by 7. More informally the conditions for collapsing
are that the arrowheads at f of all edges adjacent to f except m must point in
the opposite direction to that of m, and the same must be true of arrowheads
at g. Call the graph resulting from performing all such collapsings the chunk
graph Gs and call the uniquely joined fragment reads represented by each vertex
a chunk.

If the objective is to produce a shortest reconstruction then Step 1 above is
conservative because the best way to utilize a contained fragment read f is within
any of its containers as these must be substrings of any reconstruction. However,
when the goal is the minimum relative d reconstruction then contained reads are
important as the issue is not just string content but also start-point spacing including
those of the contained reads. Thus it is important where such contained reads are
placed in a layout in the event there is more than one choice. Even more subtle is
the very rare situation where a read f is a contained fragment read, say in read
p, but where f is used in an orthogonal dovetail fashion in a solution, i.e., f joins
two non-overlapping reads g and h (dovetail usage), and p does not overlap g or
h (orthogonality to containment). For example, ¢ = zzzazzaaa, f = aaabbb, h =
bbbyyyyy, and p = tttaaabbbttt. Given the typical coverage of assembly problems,
we very rarely encounter this situation, and usually have only a small amount of
latitude in where to place contained reads. Thus we remove them in Step 1, and
then optimally reincorporate them into the layouts proposed over the chunk graph
Gs.

In Step 2 one must be careful to first mark all transitive edges and then remove
all marked edges. This is because one transitive edge may imply another is transitive,
and so an arbitrary sequential strategy will fail as such a process is not Church-Rosser

[ChR-36]. The critical feature of this transformation is that if f = g is removed then
there is still a dovetail path in G5 that places f and g in the same relative position
and so produces the same portion of the reconstructed string (modulo the error
rate €) that would be produced by overlapping f and g directly. Thus, like Step
1, this reduction is conservative with respect to string content but not necessarily
start-point spacing. Note next that if one were to separate such a tighly overlapping
set of fragment reads on the path from f to g in order to obtain a better start-point
spacing, one creates a reconstruction in which the string modeled by the overlapping

5 For example, compute the alignment that is the concatenation of 7 and 7/, and then
insist that the “distance” between the path of this alignment and that of = in an edit
graph between f and h are within some limit.
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part of f 2 g is repeated in the reconstruction. Conversely, when the target has a
repeated substring, fragment reads within the repeat form such tightly-overlapping
paths as reads from different copies of the repeat cannot distinguish which copy
they came from on the basis of e-overlaps alone. As will be seen, this requires for
the case of minimum relative § reconstructions that non-simple paths be considered
and that repeated portions of such paths be segregated to produce the best possible
start-point spacing after the fact.

Unlike Step 2, the collapsing of Step 3 is Church-Rosser and so may take place
sequentially in any order. Note that while initially one joins two reads together to
form a chunk, one eventually begins to join chunks together to form yet larger chunks.
Thus each chunk represents a dovetail path of fragment reads, and as such has two

end reads. For achunk C = fi2fy -+ fi_1 = f, let C.If= f, be its left-end read and
C.rf= f; be its right-end read. By the nature of the collapsing rule, the only edges in
Gs adjacent to C' are those adjacent to the suffix or prefix of C.l[fand C.rfextending

to the left and right, respectively. More formally let C.le = {f = g:f=C.f} be
the set of all edges adjacent to the left end of C' (not including the one edge, 1,
which is internal to C'). Similarly define C'.re, the right-end adjacency set. It follows
by the construction that T'Squ.lf = _'7r1'5“fc.lf for every edge 7 € Clle, and also
that T'SUfC.T‘f: ﬁ“t—1~5“fcmf for every edge 7 € C.re. That is, the edges adjacent
to an end all have the same arrowhead direction that is the opposite of that of the
edge adjacent to the end read but internal to the chunk.

These last observations are reflected in the chunk graph of Figure 5 as follows.
First, chunk vertices are not depicted as the usual circle of a conventional graph,
but are drawn as solid bars with an angled notch or angled protrusion depending
on the orientation of the chunk’s end reads. Second, edges emanate from one end
of a chunk-bar or the other and their arrowhead directions always complement the
notch of the end they emanate from as they must by construction. To further re-
enforce these facts, one could imagine starting Step 3 by converting G2 into a chunk
graph as follows: (1) map every fragment-read vertex to a chunk vertex that is a bar
with notch at one end and a protrusion at the other, and (2) reattach the end of
an edge adjacent to a vertex to the end of the vertices’ bar that complements the
edge’s arrowhead. That is, let each vertex f be a chunk C; where C;.if= C;.rf= f

and arbitrarily divide its adjacent edges into C.le = {f S g: f=Clfand 7r.suff}
and C.re = {f = g : f = C.lfand —m.suf; }. Given this initial chunk graph, the

collapsing rule of Step 3 is simply: collapse C SN Cy if and only if Cy.re = Cy.le =
{7}. In the event the chunks are collapsed to form C’; then C".If = C1.lf, C'.le =
Cile, C'.rf = Cy.rf, and C'.re = Cy.re. Finally, a chunk path in a chunk graph

is any sequence Cjy \g Cy---Ch_y Mél C,, of chunk vertices and edges such that
m; € Ci_1.7eNCj.le. More informally, a chunk path is a walk that enters a chunk bar
at one end and exits the other. Note that unlike the overlap graph G, one need not be
concerned with arrowhead directions in the chunk graph Gs because its construction
guarantees proper joining. Indeed, a chunk path in G3 corresponds to a dovetail path
in G when one expands each chunk vertex back into the dovetail subpath it models.

The original impetus for the design of the collapsing process just described was
interactions with Ron Lundstrom, Jim Orlin, and Hershel Safer in the Summer of
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’93. Both groups have since been exploring this basic idea. These colleagues have
been working with a more conservative collapsing strategy that replaces Steps 2
and 3 with a single step that joins fragment reads f and g along overlap = if and

only if (a) {h : h = [ and T.sufy # msufy} C {h:h = g and T.suf, = m.sufy},

and (b) {h : h = g and T.suf, # msufy} C {h:h = [ and T.sufy = mosuf;}
[LOS-94]. This illustrates that there is more than one possible way to exploit the
basic idea and it will be interesting to compare various developments of this kind.
This author chose the most aggressive collapsing strategy possible, believing that
reduction of problem size outweighs the complexity of the expression of the objective
in the reduced problem.

We now turn to characterizing shortest and minimum relative d reconstructions
in terms of paths in a chunk graph. The collapsing rules of Steps 1 to 3 are all
conservative with regard to string content but not to the modeling of fragment-read
positions in a layout. The latter is obvious because (1) reads were removed in Step
1, and (2) some joining possibilities were removed in Step 2. It is thus easiest to
start by considering the characterization of a shortest reconstruction string. To do
S0 it is necessary to make sure that a few edges that may have been removed in Step

2 are in the penultimate graph. An edge f = g in Gy is end-to-end if in the chunk
graph Gs f and g are in UCega C.f UC.rf ie., if f and g are the end reads of
chunk vertices. Add all the end-to-end edges back into Gz (if necessary) and call the
resulting graph G4. Note that in practice it is quite unlikely a transitively removed
edge is an end-to-end edge and so very few edges need to be added back to form
G4. However, in theory they are critical to the following analog to Lemma 3 which
shows that in order to find the shortest superstring of all the reads, the objective in
G4 is the same as in the original uncollapsed overlap graph.

Lemma 4: A simple chunk path of maximal weight in G4 results in a shortest
reconstruction.

Proof: Consider an e-valid layout corresponding to a shortest reconstruction string.
The string is known (up to accuracy €) on the basis of just the dovetail path(s) of
the layout’s corresponding d.p. framework. Suppose the sequence of fragment reads
on this dovetail path is fy, f1, - fn. We say the shortest reconstruction is modeled
by a dovetail path in G.

Suppose one of the reads, say fi, in the path above is removed by Step 1. By
induction fr must be contained in some fragment read not removed in Step 1 and
consequently in the path, say it is f;. If fx_1 does not overlap fx4+1 (or one of them
doesn’t exist), then a shorter string would be obtained by breaking the path into
two contigs fofi - fe—1 and fe41fe42 - fn, and folding fi into the portion of the
string containing f;, a contraction. Thus f;_, and fr41 must overlap. But then we
may remove fi from the chain without changing the string being modeled by letting
fr—1 and fr41 be linked directly with the edge between them. Thus we can conclude
that a shortest string is modeled by a dovetail path in G;.

Now suppose that one of the edges fr_1 = fr in the dovetail path of G; is
removed by Step 2. As noted earlier, there must still be some path in Gs from fi_
to fr that models the same string as that of the join of the two fragment reads.
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To confirm this path property it suffices to note that (1) the property remains true
when a single transitive edge is removed, and (2) there is an order of such single
step removals leading to G2 because the reduction is non-cyclic (i.e. a transitive
edge cannot cause the removal of an edge which implies its removal). So consider
replacing every edge between two reads in the chain that is not in G5 by the path in
that graph that transitively implies it. Note carefully that the resulting path may
not necessarily be simple. Nonetheless, we can conclude that a shortest string is
modeled by a (not necessarily simple) dovetail path in Gs.

Next it is easy to see that a dovetail path in G2 maps directly to a chunk path
in Gs, as the converse would violate the contraction of Step 3. For example, if a
read fi were in a chunk and had g as its predecessor in the chunk, then g # fr_1
would imply fr had two predecessors and so would not have been joined to g, a
contradiction. Thus a shortest string is modeled by a (not necessarily simple) chunk
path in Gs.

Finally, suppose the chunk path in Gs is not simple. It must then have a maximal
repeated subpath C;Cj41 - Ciyr = CpCryr - Cryr where j < k, Cj_1 # Cr_1,
and Cijyrq1 # Crgrg1. If Cr—1 does not overlap Cgirq1 then a shorter string
is obviously obtained by breaking the path into two contigs CyCi---Ck_1 and
Cr4r4+1Ck42 - - - Cp, a contradiction. On the other hand if they do overlap then the
edge modeling the overlap is in G4 as every end-to-end edge is in this augmentation
of the chunk graph Gs. Thus the repeat may be excised and Cg_; joined directly
to Ci4r+1 without changing the string being modeled. Thus a shortest string is
modeled by a simple, proper chunk path in G4.

So it has been shown that to find a shortest reconstruction one may restrict
attention to the simple, chunk paths of G4. It then follows that because chunks
are formed along unique joins, the only way to minimize length is to maximize
the overlap of the edges used to connect the chunks. Ergo the statement of the
lemma. O

The proof of Lemma 4 provides the insights needed to characterize layouts (as
opposed to strings) in chunk graph terms. Let F denote the set of fragment reads
and let C C F be the set of contained reads removed in Step 1. The chunk graph
is a representation of the reads in F — C and the overlaps between them. A chunk
framework over F — C is (1) a collection of chunk paths in the chunk graph Gs, and
(2) for each chunk, say C, that is repeated k > 1 times in the chunk path collection,
a partition of C’s reads into k classes and a bijective assignment of the classes to
the k copies of C' in the chunk paths. To capture the placement of contained reads
C in a layout it is necessary to revert to the the original overlap graph G. A chunk
framework over F is a chunk framework over F —C in the graph Gz with the addition
of (3) dovetail paths in G connecting the free ends of two chunk paths, all of whose
internal reads are in C, and (4) a containment forest in G whose non-root reads are
in C less those used in part (3).

Lemma 5: Every e-valid layout is modeled by a chunk framework over F.

Proof: By Lemma 1 every e-valid layout is modeled by a d.p. framework over F.
Remove from the d.p. framework all reads in C. Clearly the containment forest
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part of this framework is removed and constitutes part (4) of the chunk framework.
Also, but much more rarely, a read or two in € may be removed from the dovetail
path portion of the d.p. framework. These reads constitute part (3) of the chunk
framework. What remains is a dovetail path(s) of reads in F — C. Take this dovetail
path and map it through the transformations of Lemma 4 to the (non-simple) chunk
path(s) in the chunk graph Gs that models the same string. The layout corresponding
to this chunk path may not be the one modeled by the dovetail path as it can have
additional reads in F — C overlapped between the reads of the dovetail path in
order to model the transitive edge between them that was removed in Step 2. Note
these additional reads must be repeated instances as every read occurred once in the

original dovetail path. In fact, suppose chunk C = fogflgfz = ~ft_1éft occurs in
the chunk path k times and label the copies C(V) C(®) ...C*) Each instance C'¥)

models a portion
(1) 70
() [N N
P(CY)=fo=fo - fv =fo
0 1 t;—1 t;

of the original dovetail path, where fj(,) , fj(l), - ~fj(1) is a subsequence of fy, f1, - fi
0 1 i
() (@)

because the transitive edge 75’ is now modeled by the sequence of edges T 410
W;i)—1+2 0---0 w;i). Observing that {P(C#))}; is a k-partition of the reads in C, the
result follows. O

To this point we have proceeded formally. On casual inspection it may appear
that we have replaced the simple formulation of Lemma 1 with the more complex
formulation of Lemma 5. But the real power of what has been done becomes clear in
the arena of practice. First and most important is the fact that in practice the chunk
graph is a very small graph. For example, in 20 trials on target sequences of length
40,000 that are the result of coin tosses and where sampled reads have a 5% error
rate introduced into them, we found that in all cases but one the chunk graph had no
edges! That is, the solution consisted of contigs corresponding to each isolated chunk
vertex in the graph. In the one case where the collapsing was not complete there
were three edges and the solution was immediately clear by inspection. Thus the
chunk graph construction provides a very robust and simple algorithm for sequencing
projects involving non-repetitive DNA. On target sequences that have repeats, one
again sees almost complete collapsing except around the repeated blocks. For example
Figure 6 shows a stylized example of what happens with our running example of
Figures 1 and 2. In practice we move from a graph with on the order of a thousand
vertices to one with generally less than fifty, often less than ten, depending on the
number and size of repeated substrings in the target sequence from which reads are
sampled. The cost of a somewhat more complex solution description is far outweighed
by the resulting combinatorial reduction.
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X=Xl . Xc. Xr

Fig. 6. Schematic Collapsing of a Target with a Repeat.

Several further practical observations help us even more. First failures to collapse
are indicative of repeats. Also recall from earlier discussion that repeats collapse into
the same chunk and are then apparent because the distribution of start points within
the chunk is too high. That is, the chunk, considered as a layout in isolation, gives
higher Kolmogorov-Smirnov likelihood values if one assumes the target is of length
G'/k for some k > 1. Indeed the values of k giving high likelihood values delimit
the set of possible multiplicities of the repeat and thus the number of times its
chunk may be repeated in a chunk path. Thus we may limit our solution search to
chunk paths in which each chunk may be traversed a number of times dependent
on a liberal reading of the likelihood of its being a repeat. Moreover most chunks
are expected to appear once on a path. Next, note that given a chunk path, the
partition of any repeated chunk is in practice always clear from the correlated-
differences among overlapping reads. This is because DNA repeats are never perfect
in nature but usually vary at least 5% from copy to copy. Thus even while there may
be 5% noise in the fragment read data due to errors, one can still discern different
copies (and also get further confirmation as to their number) by finding columns of
the implied multi-alignment where the overlapping reads clearly partition themselves
consistently over such columns. Thus finding the partitioning of a repeated chunk is
quite evident or limited to only a few possibilities.

We are currently developing a branch-and-bound procedure that searches the
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space of chunk frameworks looking for layouts that are maximally-likely in the sense
of the Kolmogorov-Smirnov statistic. The details of this procedure are not sufficiently
resolved for this paper, but its essential features are as follows. First, a repetition
factor or range of factors is assigned to each chunk according to layout density and
partitioning possibilities. Then, a branch-and-bound procedure searches the space
of all chunk paths consistent with the factor ranges. For each chunk framework over
F — C reached by the B&B procedure, the algorithm goes on to explore the possible
completions with fragment reads from C. First these reads are examined for joining
chunk paths (usually no such joins are possible), and then the remaining reads are
incorporated in a containment fashion, where again possibilities are limited to just
a few by the removal of transitive containment edges in analogy to what has been
done for dovetail edges in Steps 2 and 3. The resulting solutions are evaluated with
respect to their relative deviations ¢ and the best ones stored for reporting at the
end of the search.

As final note, we observe that it is easy to incrementally compute the uniform
deviation A = d of a layout as its pieces are being joined together. For a given chunk C'
containing reads {fx} and whose layout places these reads at start positions {sp},
let C.span = spic| + |fic||, C.max = max;{% — 2££} and C.min = ming{% —

L }. Note that in these terms the uniform deviation of the layout for chunk C' is

1(C.max—C.min++). Now suppose that C1=C5 and the two chunks are to be
merged into a single chunk C’ along this overlap. It is an easy exercise to see that
C'.span = Cy.span + Cq.span — length(n), C'. max = max(C;. max, C2. max+A4),
and C’. min = min(C1. min, Cy. min+A) where A = % — Mﬂ. In this
way the uniform deviation of a current set of choices leading to a chunk path may be
maintained in constant time overhead and can direct the B&B search. Further note
that this observation may also be used to compute the deviations of the chunks as
they are built in Step 3 of the collapsing sequence. Finally, to accommodate chunks
that are repeated r > 1 times, it suffices to simply extend their internal span to
C.span = r - sp|c| + |fic|| as if the repeated chunk had been unbraided, and to
TS8Pk k TSPk

correspondingly set C.max = max;{% — Z2££} and C.min = ming{% — =22}
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