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Abstract

We consider the problem of separating two distinct classes of k similar sequences of length n
over an alphabet of size s that have been optimally multi-aligned. An objective function based on
minimizing the consensus score of the separated halves is introduced and we present an O(k%n)
heuristic algorithm and two optimal branch-and-bound algorithms for the problem. The branch-
and-bound algorithms involve progressively more powerful lower bound functions for pruning the
O(2%) search tree. The simpler lower bound takes O(n) time to evaluate given O(sn) global data
structures and the stronger bound takes O((k + s)n) time by virtue of an efficient solution to the
problem of finding the second-maximum envelope of a set of piece-wise affine curves. In a series of
empirical trials we establish the degree to which classes can be separated using our metric and the
effective pruning efficiency of the two branch-and-bound algorithms.
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1 Introduction

Phylogenetic analysis of sequences is fundamentally a problem of separating sequences according to
their dissimilarity [1]. A simpler variation of this problem occurs in the context of DNA sequence
assembly, where one has noisy sequencing reads from a set of repeats all derived from the same ancestral
template. Each copy of a repeat typically varies by 1 to 20% from other copies and so instances would
be easily distinguishable from each other if the sequence data was exact. Unfortunately, sequencing
reads have a 1 to 5% error rate and so even reads sampled from a given repeat instance will not align
perfectly. The problem is to correctly separate the reads into those sampled from each distinct repeat
instance, in the face of this background error.

Our work begins with a multi-alignment of highly similar DNA read sequences that is presumably
optimal or near optimal, as might be produced by a good heuristic algorithm. The set of reads that
have been aligned might either be all those that have a significant overlap with a seed read or might
be an overcollapsed contig assembly of a collection of reads from a set of nearly identical interspersed
repeats [2, 3, 4]. We will assume for simplicity that all reads cover the span of the alignment as in
Figure 1. The assumption is that reads sampled from different instances of a repeat family are in the
alignment. For simplicity we will again focus on the case that there are just two instances so that the
reads need to be separated into two subclasses.

The basic assumption for all separation methods proposed thus far is that sequencing error is
a random phenomenon whereas the differences, called micro-heterogeneities by biologists, between
repeat instance will correlate in a multi-alignment of the reads. Figure 1 illustrates this, where the
haze of red boxes denote errors, and the blue and green boxes denote micro-het variation between
the two subclasses. Algorithms to date attempt to distinguish which differences are noise from those
that are micro-hets, and to then separate the reads on the basis of the micro-het positions. Doing so
heuristically is quite simple and the idea is relatively effective.

In this paper we start with a simple measure of optimal separation and develop a couple of branch-
and-bound (B&B) algorithms that find the best possible separation according to this measure, i.e. the
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Consensus

Column Scores Cons(M) = sum of column scores = 44

Figure 1: A repeat multi-alignment illustrating the randomness of error and the correlation of
micro-het differences.

algorithm is not heuristic [5]. One should note that the problem is NP-hard and the B&B algorithm
could in principle take exponential time. We develop two versions of the algorithm, the second having
a stronger lower bound concept that results in greater pruning of the search tree and thus better
efficiency. In an empirical results section we explore the limits of the algorithm and the level to which
repeats can be separated in this fashion.

2 The Problem

We begin with a multi-alignment, M, of k sequences Si,So,...Sk over alphabet 3. The multi-
alignment M is a k by n array where row k is the sequence Sy with n — |Sg| dashes interspersed.
The symbol dash, -, is assumed not to be in ¥ and we let ¥+ = X U {-} and s = [ET|. It is further
presumed that the dashes have been interspersed within the sequences so that the consensus score
of the multi-alignment is minimal, or as near minimal as a good computer program can make it.
In our work we use realigner for this purpose [6]. For a given column of M, [M;;]j=1, let R} =
[{j : M;; = a}| be the set of rows at which the symbol a occurs, for a € £*. Then the consensus
character ¢; for column 3 is the one for which |R{| is maximal, and the consensus score for the column
is k — |R;?|. The consensus score, cons(M), of M is the sum of the consensus scores of its columns,
that is:
cons(M) = X7 mazxq(k — |R}|) = kn — X} 1mazxe|R}|.

The consensus sequence for M is obtained by taking the sequence cico...c, and deleting all dash
symbols. Figure 1 illustrates the concepts.

Given a multi-alignment M, we consider the problem of finding a partition of its rows into two
sets such that the sum of the consensus scores of the two subalignments obtained by including just the
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rows from each set is minimal. Formally, let X C [1,%] and let X be its complement, i.e. [1,k] — X.
Let Mx be the alignment obtained by removing every row in X°.

Best Multi-Alignment Partition Problem: Given multi-alignment M, find a set X, such
that its partition score, part(M,X) = cons(Mx) + cons(Mx-), is minimal.

It is a simple exercise to verify that part(M,X) < cons(M) for any choice of X. For example, by
partitioning the multi-alignment in Figure 1 by selecting X = [1,5] we obtained a combined consensus
score for the two parts of 34, contrasted with the score 44 for the original multi-alignment. If the
differences between the sequences in M and its consensus are few in number and randomly positioned
within columns, as are the red boxes in Figure 1, then cons(M) — part(M, X) is 0 in expectation for
any choice of X. On the other hand, if there are p columns where h of the sequences tend to have
one symbol and the remainder have another, as are the green and blue boxes in Figure 1, then the
optimal partition score will generally be on the order of p - maxz(h,k — h) less then cons(M), and
the X achieving the optimum will embody the h sequences containing the correlated columns. For
example, in Figure 1, even though only 3 columns out of 50 have such correlated differences, and even
though they are not perfectly correlated, the optimal partition score is almost 25% smaller than the
consensus score and is achieved only for the correct partition X = [1,5]. This motivates our measure
of separation. Intuitively, we seek the division of the sequences into two groups so that the sum of the
differences of the members from the consensus of their group is minimal.
The number of occurrences of the symbol a in column ¢ of Mx is |[R{ N X|. Thus:

part(M,X) = cons(Mx) + cons(Mxe)
= Zymaz,(|X] — R N X|) + SiLymazy(| X[ — |R} 0 X°)
= kn— X, (maz.|R¢ N X| + mazy|RE N X€)).

Because kn is fixed throughout, one sees that an equivalent objective is to maximize |R{ N X| and
|R£~’ N X¢| in every column. In what follows we will think in terms of this optimization problem.

3 A Branch-and-Bound Framework

In a purely exhaustive algorithm, one could try all possible 2¥ choices of X, evaluating the partition
score for each choice, and identifying the best. The obvious implementation results in an O(k2%n) time
algorithm. This can be reduced to O(2¥n) time, by traversing a search tree modeling all subsets of
[1, k], incrementally building the score of each partition during the traversal. We pursue this problem
now as a preliminary exercise that permits us to develop a few key concepts.

The search tree is the complete binary tree of height k. At each vertex in the tree one considers
either including or excluding in X a row that has not been previously considered along the path from
the root to the given vertex. These two choices are modeled as edges leading to the vertices at the
next level. In order to keep the scheme simple, we will assume that the same row, 7, is considered
by every vertex at a given height h, subject to (w1, m9,...m) being a permutation of [1,k]. For
the moment m can be the identity permutation. The 2¥~" vertices at height &, model all subsets of
{Th+1, Tht2, ... T} (denoted hereafter as w[h+1,k]). During a traversal of the tree one can consider
maintaining data structures that are functions of the set Y modeled by the current vertex, at height
say h, and its relative complement Yc = w[h+1,k] — Y. As a traversal progresses rows are added or
deleted from Y and Yc, so that the challenge is to incrementally update the data structures efficiently
so that they reflect these changes.

To solve our preliminary problem, one must maintain the O(sn) quantities, In{(Y") = |[R¢ NY| and
Out}(Yc) = |R N Yc|. Whenever Y and Yc are implicit from the context, we will drop the function
dependence and for example, write simply In{ indicating the quantities value at the appropriate
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moment in time. Maintaining these values is easy in O(n) time per edge traversal as T2 (Z £ z) =
T (Z) +6zere for any Z and T being either In or Out. What is more difficult is that one further needs

1 2 S
to maintain the permutations 7; = (n},n?,...n$) such that In;* > Ing" > ... > In;*, and p; such

that 0ut';l1 > 0utf% > ... > 0utff. Fortunately, when an edge is traversed, only one quantity in each
of a column’s two orders increases or decreases by one. By maintaining an anchored doubly-linked
list of the quantities with a given value, and a doubly-linked list of these anchors in order, one can
incrementally update a column order in O(1) time when a single quantity changes by 1. Note that
even though the data structures involve a fair bit of linking overhead, space is still O(s) per column,
for O(sn), total. Finally, when a leaf is reached, the partition score of each column is computable in
O(1) time as k — (In?"1 + Outf%). We thus have an O(2*n) time, O(sn) space algorithm.

The algorithm above quickly becomes untenable as k increases due to its exponential complexity.
Often, it is possible to greatly prune the portion of the search tree explored using the branch-and-bound
paradigm. This approach requires the design of the following two elements:

1. a heuristic algorithm, Heuristic, that provides an initial partition set Z;,;; whose partition score,
part(M, Z;,it) gives an initial upper bound on the optimum score.

2. a function, LB, that for a vertex v gives a lower bound on the best partition score for any
set modeled by a leaf that is a descendant of v. That is, if v is of height h and represents
Y C w[h + 1,k], then LB has the property that:

LB(Y,h) < min(part(M,Y UX) : X C «[1, h]).

A branch-and-bound algorithm, maintains a global record of the best solution, Zp.s;, it has seen thus
far, and uses the lower bound to avoid traversing the subtree rooted at a vertex v, in the event
that the lower bound is not less than the score of the current best. Figure 2 gives the framework
of our branch-and-bound algorithm. Because the problem is symmetric with respect to X and its
complement, note that we can without loss of generality always chose to place m; in X. With a good
initial solution Z;,;; that gets close to the optimum solution, and a tight lower bound function one
can significantly prune the amount of the search tree that gets explored, sometimes to the extent of
achieving polynomial performance in expectation. Employing the paradigm, thus involves designing a
heuristic and a lower bound function that achieve the right compromise between efficient computation
and providing bounds sufficient to prune the search tree effectively. In the next three subsections
we present a heuristic and two lower bounds, the second being more intricate but also more tightly
constraining than the first.

global Z.,;: set of [1, k]

Procedure Search(Y: set of [1, k], h: int)
{ if h =0 then
{ if part(M,Y) < part(M, Zpest) then Zyest <+ Y }
else if LB(Y, h) < part(M, Zpes:) then
{ Search(Y + 7p,h—1)
if LB(Y, h) < part(M, Zpest) and h < k then
Search(Y ,h—1)
}

}

Zyest < Heuristic()
Search(f,k)

Figure 2: The Branch and Bound Framework.
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3.1 The Initial Heuristic Algorithm and Selection Order

Most of the heuristic programs for repeat separation begin by trying to identify columns in the multi-
alignment where the two sequence classes differ. Using Figure 1 as an example, one sees that these
columns are generally characteristic in that there are two symbols vying for the consensus, whereas
in all other columns there is only one or two occasional "noise” disagreements with the predominant
symbol. So one might say that any symbol that occurs not more than threshold parameter 7 < k/2
times in a column is noise, and otherwise it is signal. Any column containing two or more signal
symbols is likely to denote a position of micro-heterogeneity between the two classes and should be
used to partition the sequences into their respective classes. Call these the discriminating columns
and denote them by D,7. Formally, D7 = { i : Ja # bs.t. |R?| > 7 and |R?| > 7}.

Given a choice for 7 that defines a set of discriminating columns, we will try to pick a good parti-
tioning set by starting with a given row s and adding rows to its partition that have good agreement
with it over the discriminating columns. To this end let cons,(s,h) = |{ i:4 € D;; and M, = M, s}|
be the number of discriminating columns where rows s and h have the same symbol. We can then let
our heuristically chosen partition be

I, ={ h: cons;(s,h) > (|Dy;l/2)}

It takes O(kd;) = O(kn) time to compute I, ; where d; = |D,}|. To insure the best possible initial
guess, we compute I, , for every choice of s € [1, k] and every choice of 7 € [1, [k/2] — 1], and take the
partition, I* that gives the best score. The total time to explore all the possibilities is O(k®n), but
¥.;d; is generally much smaller than kn so performance is generally much better in practice.

We will examine the performance of this heuristic in the empirical results section. For the moment
we note that in any problem for which there are sufficient discriminating columns in M, the heuristic
finds an optimal partition. It is thus the case that often the B&B portion of the algorithm is really
rapidly confirming the optimality of this choice.

The depth at which the lower bound begins to trim effectively can depend substantially on the
order 7 in which rows are considered for incorporation into a partition set. Our experience is that
by favoring elements in the true partition set first, one directs the algorithm to the correct solution
thus improving the upper bound quickly, and that every branch at a shallow depth that does not
choose one of these elements gets quickly trimmed as its absence increases the lower bound. So given
the initial partition I*, let £ = ejes...e, be the consensus string for the sub-alignment M- and
sim(h, E) = |{ i : M;} = e;}| be the number of columns where row h and sequence E have the same
symbol. The permutation 7 = (my, 79, ... 7) of [1, k] that has the characteristics we desire is one for
which sim(m1, E) > sim(me, E) > ... > (7, E). A simple valuation of sim(h, E) for each h followed
by a sort produces 7w in O(kn + klogk) time.

3.2 A First Lower Bound

We now develop a lower bound on the best possible score for any partition that is modeled by a leaf
of the current vertex v in the search tree. As in our preliminary exercise above, let Y model the set
for the current vertex v which we will suppose is at height A, and let Yc represent the complement of
Y with respect to the set w[h + 1, k] of rows considered on the descent to v. Furthermore we’ll use
all the machinery developed for computing the O(sn) In and Out quantities and their sorted orders
n and p, save for complementary quantities NotIn and NotOut to be introduced below.

Our first lower bound concept is quite simple: in each column permit the selection of rows for the
completion of Y that maximizes the score of that column. Surely permitting the selection of rows to
be independent for each column creates an additional freedom not present in the real problem, and
thus guarantees a lower bound on the true value of the best extension of Y.

So consider that there must be some symbol a giving rise to the maximum |R{NX| for the extension
of Y to X, and some symbol b giving rise to the maximum \Rf N X¢| for the extension of Yc to X¢. If
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symbol a gives the maximum in X, then the best score one can attain for the X-half is NotOut{ =
|R¢ NYce|, the number of a’s in rows not already allocated Ye, and one attains this by assigning all
unassigned rows containing an ¢ to X. Similarly if symbol b gives the consensus in X¢, then the best
score one can get in the X¢-half is NotIn? = |[R?NY|, the number of b’s in rows not already allocated
to Y. So if the symbols a and b giving a maximum sum of the two halves are not the same then the
best attainable score is maz,z,NotIng + NotOut?. The other possibility is that the same symbol ¢
is used in both halves in which case the score over both halves is just |R{|. Thus it follows that the
score of the best possible extension of Y in column ¢ through the next h levels is:

Extend;(Y) = maz{maz,zNotInd(Y) + NotOut’(Y), maz.| R{|}

As in the basic exercise one can maintain the current value of NotIn{(Y') and NotOut¢(Y) and
their orders, n; and p; in O(n) time per search tree edge traversal, and with O(sn) space. In addition
in a preprocessing step prior to the start of the search one should compute the O(sn) fixed quantities
Ceil! = maz,|R}|. To compute Extend;(Y") one could consider every pair of symbols a # b but with
the orders 7; and p; one can compute the maximum sum in O(1) time. If 5} does not equal p}, then the

1 1

maximum sum is clearly the sum of the two maxima for each half, i.e. NotI n:h + N otOutf". On the
otherhand, if the symbols giving the maximum in each half are the same, then the maximum sum is
the better of the maximum in the first half and the second-maximum in the second half or the second-
maximum in the first half and the maximum in the first half, i.e. maz{NotI n?l +N otOutf”" ,NotI n?l +

1
NotOut?"}. Then taking the maximum with Ceil¢ delivers the desired value. So in constant time one
can compute Eztend;(Y), and in O(n) time our first lower bound:

LB1(Y) = &;Extend;(Y)

Computing this lower bound is as efficient as updating the structures needed for the basic exercise.
But as we will see in the empirical results section it can eliminate the exploration of a significant
portion of the search tree.

3.3 A Stronger Lower Bound

Computing a stronger lower bound requires further constraining the possibilities for extending each
column, but not to the point of requiring that one make the same choices in every column, which
reduces to the original problem. An intermediate is to consider the constraint that exactly g rows be
added to Y in each column for each choice of ¢ in [0, k). For a given g each column has the freedom to
pick whichever g rows it wishes to add to Y, but exactly g must be added. The result is thus clearly
a lower bound on the best score achievable from Y.

Consider then the case where exactly g rows are to be added to Y. Suppose symbol a gives the best
score in the X-half of the partition. Then this score is Inpart$(g) = min{NotOut{, In{ + g} which is
the smaller of the unrestricted case, NotOut, and adding exactly ¢ unassigned rows containing a to
the In{ already in Y. Similarly the best score obtainable in the X“-half of the partition with symbol
b as the maximizer, is Outpart?(g) = min{NotIn?,Out? + (h — g)}. So the best score obtainable is
either the maximum of the sum of the two terms for every choice of a # b, or if the same symbol gives
the maximum in both halves, then the score would be Ceil{ as in the simpler bound above. Thus it
follows that the score of the best possible extension of Y with the addition of exactly g rows is:

Extend; (Y, g) = maz{maz.zpInpart](g)(Y) + OutPart](g)(Y), Ceil;'}

Two obvious ways to compute this stronger lower bound at each vertex are as follows. First use
the basic machinery to keep current values for NotIn, NotOut, In, and Out, but not the orders n and
p, and compute Eztend;(Y,g) in each column directly in O(ks) time for a total of O(ksn) time per
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Figure 3: Anatomy of the Inpart and Outpart curves and an illustration of maximum and second-
maximum envelopes.

vertex and O(sn) space overall. The other alternative is to use the basic machinery to incrementally
keep count of Inpart(g) and Outpart(g) for each g € [0, k] explicitly along with orders of each using
O(ksn) overall space. As for our first bound, this permits evaluation of Eztend;(Y,g) in O(1) time,
implying the evaluation of the bound at each vertex in O(kn) time. But we now show that with O(sn)
space, one can perform the evaluation of the bound in only O((s + k)n) time.

As for the first lower bound we maintain the current value of NotIn{(Y') and NotOut{(Y) and
their orders, 7; and p;. We also maintain the current values of In¢(Y) and Out¢(Y’), but not their
orders, as in the basic exercise. Figure 3(a) illustrate that the function Inpart{(g), considering g to
be unbounded, is a 2-piece affine curve where the left part is a line of slope 1, the right part is a
line of slope 0, and the transition occurs at g = NotOut? — In¢. Similarly, Outpartf(g), is a 2-piece
affine curve where the left part has slope 0, the right part slope —1, and the transition occurs at
g = h— (NotInf — Out?). Both curves are concave and so we know immediately that their maximum
envelope can be computed in O(s) time by our earlier work on sequence comparison with concave gap
penalties [7]. The maximum envelope Mazppert;(g9) = maz,Inpartf(g) is the maximum value that
one can obtain over all s Inpart-curves, for each choice of g. Figure 3(b) illustrates the maximum
envelope of a set of curves.

We review this basic result for finding the maximum Inpart-envelope as we will need to extend
it to finding the second-largest envelope, a new variation of this fundamental problem. Suppose that
p = (p',p?,...p°) is the decreasing order of NotOut where the column 4 and its subscript will be
implicit. First, observe that for any two letters a = p' and b = p* where ¢t > u, the curves for a
and b intersect at most once, where the a curve is higher at the right, and the curves intersect at
g = NotOut® — In® if and only if In® < Inb.

Starting at the right (large g) the curve for p' defines the maximum envelope and remains dominant
until a curve lower in the order intersects it. If there are several such curves, then the one highest
in the order p will begin to define the envelope immediately after intersecting the curve for p! as
lower curves must intersect the p'-curve at a lower value. Recursively, as one proceeds right to left, if
the current curve defining the envelope is p?, then it remains dominant until intersected by the next
highest curve in the order p. Figure 4 sketches the O(s) algorithm that traces the maximum envelope
from right to left. One can record the maximum value for each g € [0, h] in O(k) additional time.

A symmetric algorithm delivers the value of M azoytpart; (9) for every choice of g € [0, h] in O(s+k)
time. But as for our first lower bound, to efficiently evaluate Extend;(Y,g) for a specific value of g it
is necessary to not only know the maximum value, and the symbol attaining it, but if the symbols for
the two parts are the same, one must know the second largest value. Formally, the second-maximum
envelope Maw%nparti (9) = mazp{Inpart’(g) : Ja # b Inpart®(g) < Inpart?(g)}. Certainly, it is easy
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“p! gives the maximum for g arbitrarily large”
a+ p!
for t + 2,3,...s do
if In”" > In® then
{ “p® takes over as the maximum for g < N otOut?’ — In®”
a+ pt

}

Figure 4: Computing a maximum envelope in O(s) time.

to note the symbol a giving the maximum envelope value for g as the maximum values are computed.
Given that we can get the second largest values for all choices of g in O(k + s) time then clearly, as
in the lower bound, the Extend values can be compute in O(1) time per point. So it remains to show
how to efficiently compute the second-maximum envelope.

Starting at the right (large g) the curve for p? defines the second-maximum envelope and remains
dominant until either (a) the curve for the first maximum intersects and moves below it, or (b) a curve
lower in the order intersects it. As before if there are several such curves for case (b), then the one
highest in the order will intersect first. But it is also true that if case (a) occurs, then it always occurs
before case (b) as the maximum curve pierces the slope 0 part of the second-maximum, and the lower
curve pierces the slope 1 part. So one checks for case (a) and if it occurs, then the current maximum
and second-maximum switch at the point of intersection as one scans from right-to-left. Otherwise
case (b) occurs and one replaces the second-maximum with the intersection curve. Figure 5 outlines
a complete algorithm embodying this logic and Figure 3(b) shows an example of a second-maximum
envelope to aid ones intuition.

“p? gives the 2"¢-maximum for g arbitrarily large
a+ p*
b« p?
for t + 3,4,...s do
{ if In® > In® then
{ “a becomes the
a<b
} t
if In®" > In’ then
{ “p takes over as the 2"¢-maximum for g < NotOut? — In
b+ pt

}

274 maximum for g < NotOut® — In®”

by

}

Figure 5: Computing the 2"¢-maximum envelope in O(s) time.

4 Empirical Results

A data set generator was built to test and evaluate the algorithm. The generator produces a random
progenitor sequence of length 500 over the DNA alphabet, introduces 500c differences to produce the
second progenitor, and then produces k copies of each progenitor perturbed by 500e differences. The
2k sequences are then initially aligned by pairwise comparisons and then submitted to realigner to
produce the multi-alignment input to our algorithms. We will study the algorithms only with respect
to the three parameters k, ¢, and e. In a more extensive set of trials the length of the sequences, the
number of classes, and the number of copies in each class should be studied.

First we examined the relative performance of the two branch and bound algorithms with respect
to how much of the search tree they pruned and how much CPU time they took to solve a particular
instance. Table 1 gives tables showing the percent of the total search tree explored and the time taken
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Percent of tree explored (Bound 1)

Percent of tree explored (Bound 2)

€ €
5% | 10% | 15% 5% | 10% | 15%
5 2.54% 5.26% 9.44% 51 25 53] 96
10 .0140% .0266% .0678% 10 || 147 | 279 | 711
15 | .000029% | .000145% | .000483% 15 || 307 | 1566 | 5183

Vertices explored (Bound 1

€ €
k 5% | 10% | 15% k|| 5% | 10% | 15%
5 70% 1.31% 2.30% 51 7] 13] 23
10 .0016% .0022% .0055% 10 16| 22| 57
15 || .0000026% | .0000038% | .0000149% 15 || 28| 41| 160

)

Vertices explored (Bound 2)

€ €
k|| 5% [10% | 15% k|| 5% [10% | 15%
5[ 29[ 38] 5.1 5 40] 49] 6.7
10 || 16.2 | 21.4 | 33.8 10 || 17.3 | 21.5 | 33.2
15 || 45.3 | 79.9 | 189.3 15 || 50.5 | 60.2 | 108.3

Time Taken (Bound 1) Time Taken (Bound 2)

Table 1: Percent of the search tree explored, absolute number of vertices of the search tree explored,
and time taken (in seconds) by the B&B algorithm as a function of the bound and the number (k)
and error rate (e) of the copies.

over 100 trials at each of several settings of k and e. The parameter ¢ was held constant at 5%, a
differential large enough to guarantee that the algorithm was always correctly separating copies as will
be seen below. One sees that significantly smaller number of vertices and an even smaller percentage
of the search tree is explored, with the stronger bound performing a factor of roughly 4, 10, and 40
times better for £ = 5, 10, and 15 respectively. Despite this, because the time for computing the
stronger bound is greater, it generally takes more time to solve a problem with this bound, unless
the error rate is particularly high. Finally, one should observe that the number of vertices explored
is still growing exponentially in both k& and e, so like most branch-and-bound algorithms, we have
significantly ameliorated the exponential nature of the problem but not eliminated it.

Next we consider how effectively our notion of separability correctly identifies the two subclasses.
That is, if one computes a set X°P! that produces the optimum partition score opt(M) = minx part(M, X),
how often is X°P! actually the desired answer? Recall that the design rationale was that the freedom
to separate in the case of just noise does not induce much of a drop between cons(M) and opt(M),
but when there are, say ¢ discriminating columns, then a separation along the lines of the two classes
results in a drop in score of tk(1 —2e) where e is the level of noise and k is the number of copies in each
class. So the question is, “When is this drop large enough that it is distinct from the improvement
one can obtain just by chance in the presence of only noise?”

We ran 1000 trials for each of several choices of k and e, measuring cons(M) — opt(M) in the
case where only noise was present (that is, there was only one class of sequences) and there were
500 columns. Table 2 gives the average and maximum value obtained for each choice of parameter
settings. The average and maximum appear to grow slightly super-linearly in e and to increase quite
slowly in k. The maximum value gives a rough indication of the largest value one would see with
probability .001. Using the expected drop of tk(1 — 2e) in the case of ¢ discriminating columns, we
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e e
5% | 10% | 15% k || 5% | 10% | 15%
51 5.03 | 11.41 | 19.29 5 9 18 27
10 || 6.14 | 13.01 | 20.94 10| 11 20 29
15 | 6.71 | 13.73 | 21.86 15 | 12 21 29
Average Difference Maximum Difference

e e
k [| 5% | 10% | 15% k [| 5% | 10% | 15%
5 2 5 9 5 4 5 9
10 2 3 5 10 4 5 6
15 1 2 3 15 4 4 5

Predicted Observed

Table 2: The first row of tables summarize the average and maximum value of cons(M) — opt(M)
when M is a matrix of 2k sequences of 500 letters that differ from a common ancestral sequence by e
percent at random. The table at the lower left gives the predicted number of discriminating columns
need to accurately separate two classes based on the table of maximums above. The table at the
lower right gives the observed number of discriminating columns needed to tease the subclasses apart
correctly 999 times out of 1000.

predict in the lower left table of Table 2 the number of columns needed to correctly separate with
probability .999. We then show the actual number from empirical trials. The agreement is reasonable
with the prediction being overly optimistic. It is especially interesting in the low error rate case (e =
5%) that as k increases, the number of discriminating columns needed to correctly separate does not
seem to improve. Nonetheless, the final table shows that one can separate classes that are 1% or more
different in the presence of noise up to 10%.

Acknowledgements: The author wishes to thank Marie France Sagot for several conversations
on the measure of separability and the problem formulation in the early going.
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