A PRECISE INTER-PROCEDURAL DATA FLOW ALGORITHM*

Eugene W. Myers

Department of Computer Science
University of Colorado at Boulder
Boulder, Colorado

ABSTRACT:

Data flow analysis is well understood at the
intra-procedural level and efficient alqorithms
are available. When inter-procedural mechanisms
such as recursion, procedure nesting, and pass-by-
reference aliasing are introduced, the data flow
The avail,

live, and must-summary data flow problems are

problems become much more difficult.

shown to be NP-complete in the presence of alias-
ing. However, an algorithm is presented with
O(SET*EDGE) time performance where EDGE is the
size of the program's flow graph and SET is a
possible exponential number which reflects the
number of aliasing patterns of the program. It is
argued that in practice SET is small and on the
order of the number of variables of the proaram.

INTRODUCTION

Data flow analysis problems have been studied
extensively for a number of purposes, amona them
olobal prooram optimization, software validation,
and program documentation [F0].

Initially, in-

terest centered on determining the data flow

*This work was supported in part by NSF arants

MCS77-02194 and MCS-8000017

Permission to copy without fee all or part of this material is grant-
ed provided that the copies are not made or distributed for direct
commercial advantage, the ACM copy- right and its date appear,
and notice is given that copying is by permission of the Associa-
tion for Computing Machinery. To copy otherwise, or to republ-
ish, requires a fee and/or specific permission.

© 1981 ACM 0-89791-029-X/81,/0100-0219 $00.75

219

patterns visible at a civen statement within a pro-

cedure. The available expression and live variable

problems are of this genre. The algorithms con-
structed for such analyses [AC,GH,UH,UK] are very
efficient but strictly intra-procedural in the

sense that they do not take into account the effects
of other procedures within a program.

flore recent efforts have focused on determining
these patterns in the presence of the inter-pro-
cedural effects induced by procedure calls. Once
the scope of the problem was so enlarged, an addi-
tional class of probiems arose. Specifically, one
could then ask what effect the execution of an en-
tire procedure had on the variables of a program.
Such problems were termed the must - and/or may -
summary problems [Barth].

Current inter-procedural algorithms either com-
pute approximations to the answers which are precise
up to symbolic execution [Barth], or are very in-
efficient [R1,R2], or ionore one or more of the
"difficult" effects such as recursion or aliasing
[S.A].
and precise alaorithm for the may-summary problem

[Ban,M].

The one notable exception to this is a fast

This paper focuses on the remainina prob-
lems — 1ive, avail, and must-summary.
The inter-procedural live problem is shown to

be NP-compiete [GJ]. The avail and rnust-summary

problems are co-NP-complete. These problems are in-

tractable due to the presence of aliasing. However,
the expected degree of exponentiality is felt to be
small, especially when certain redundancies are
eliminated. Iterative solutions to these problems
are presented which are then related to the theory
of monotone data flow analysis frameworks [Kildall].
An efficient algorithm based on these iterative so-
Tutions is then sketched which is superior to the
one obtained by employing Kildall's general algo-
rithm. The algorithm runs in time O(SET*EDGE)
where EDGE is the size of the program's flow graph.
SET is the possibly exponential parameter which re-
flects the number of aliasing patterns of the pro-
gram. A pruning scheme is introduced which reduces
the number of alias patterns to the extent that SET
is expected to be asymptotically small (on the
order of the number of variables in the program) for
realistic programs. Thus the algorithm should be
efficient in practical applications.
PROGRAM MODELS:

This paper investigates data flow problems in
a typical block structured programming language such
as PASCAL. The salient inter-procedural character-
istics of such a language are the nesting of pro-
cedures, pass-by-reference parameters, and re-
cursion. The analytic model employed in this paper
is sketched below.

It is assumed that procedure definitions may
be nested. This nesting is modelled by a directed
rooted tree whose root, MAIN, is the main procedure.
A procedure P is the father of a procedure Q if the
definition of Q is directly declared within P.
Figure 1 should make the construction of this
nesting tree clear.

Within the definition of a procedure, P, a

220

PROGRAM

NESTING TREE

rgroc P

declare a
rproc Q{b)
declare cd

rproc Riyacie)
|

CALL GRAPH

FIGURE 1: INTER-PROCEDURAL STRUCTURES

number of local variables, LOCAL[P], may be declar-
ed. This set includes the formal parameters of P.
Those formal parameters whichare passed-by-reference

are termed reference parameters of P and are denoted

by FORMAL[P]. A variable is global to P if it is
the local variable of any proper ancestor of P in
the nesting tree. The code part of P can address
(manipulate) only its local and global variables.
Formally --

GLOBAL[P] = u (LOCAL[Q]|| Q is a proper ancestor of P)
ADDRESS[P] = LOCAL[P] u GLOBAL[P].

The code part of a procedure can also contain
statements, called call-sites, which call (invoke)
other procedures. One writes P--=--------- > R
(fl""’fk) if there is & call-site in P calling R

with actual parameters a; through a where each

actual a; is passed-by-reference to the reference
parameter fi' Only reference parameteres are of in-
terest as these are the only variables for which
aliases are dynamically established. The call struc-
ture of a program is modelled by a directed multi-
graph, called a call graph, in which each edge cor-
responds to a call-site. Each edge is labelled with
the tuple of actual parameters used at its call-site.
The call graph may contain Toops as recursion is per-
mitted. Figure 1 illustrates the construction.

A call graph is assumed to satisfy the following
requirements,

(1) Every procedure is reachable, i.e., there is a
path from MAIN to every procedure.

(2) If P —+Q (P calls Q) then Q is addressable by
P, i.e., the father of Q is an ancestor of P
in the nesting tree.

A simple consequence of (2) is that P - Q implies
GLOBAL{Q] < ADDRESS[P]. A path in the call graph
.is called a call chain and represents a sequence of
calls made in an execution of the program.

A program's execution involves two dynamic ef-
fects. Whenever a call is executed, a new activa-
tion of the called procedure R, is created. Each
activation causes a new incarnation (instance) of
each variable in LOCAL[R]-FORMAL[R] to be cre-
ated. Recursion permits the simulaneous exist-
ence of many incarnations of the same variable --

a variable refers to its most recent incarnation.
The following lemma determines when a variable
addressed by two different procedures refers to the

same incarnation.

Incarnation Lemma: Suppose Q0 -+ Q1 > o Qn

is a call chain. A variable x refers to the

same incarnation in both Q and Q,

1).

=

iffxen (GLOBAL[Qi]H i

221

This effect is called the SCOPE effect.

The other dynamic effect, called the ALIAS ef-
fect, is the aliasing of reference parameters to
their actual parameters during the execution of an

(ags.s

invocation. When P--=----2- > R (f ...,fk) each f;

is aliased to a3 that is, fi is made to refer to
the same incarnation that a; referred to in P. In
general, two variables x and y are aliased along

some call chain p, written x <an, if both x and y
refer to the same incarnation after p is traversed.
Aliasing is an equivalence relation along a spe-

cific call chain. However, different call chains

establish different aliasing relations. The form
of these relations will be discussed in the next
section.

The data flow problems analyzed in this paper
require that every procedure's internal control
structure is represented. Each procedure is mod-
elled as a flow graph [Karp] with unique exit and
entry vertices. These flow graphs are linked inter-
procedurally by calls into a super araph as follows.
Suppose E:P+R is an invocation of R from call-site
vertex CSITE[E] in procedure P's flow graph. The
vertex, CSITE[E], is split into two vertices,
CPOINT[E] and RPOINT[E]. A1l in-coming edges to
CSITE[E] are in-coming edges to CPOINT[E] and a
call edge is added from CPOINT[E] to the entry ver-
tex of R. A1l out-going edges from CSITE[E] are
out-going edges from RPOINT[E] and a return edge is
added from the exit vertex of procedure R to
RPOINT[E]. ATl other edges in the resulting super
graph are called simple edges. For a call or return
edge e, let INVOKE[e] be the invocation E in the
call graph responsible for the creation of e.

Figure 2 depicts the construction.

The super graph model was chosenas itsatisfies

ENTRY(R)

CPOINTIE) W
.

CSITELE) "=9

E:P—R

RPOINTIE]}

EXIT(R]

INVOKE call] = INVORE(return] = €

FIGURE 2: MODELLING CALLS IN THE SUPERGRAPH

the criterion that any execution sequence of the pro-
gram can be modelled as a path in the super-graph.
Note, however, that not every path is an execution
sequence, despite the assumption of precision up to
symbolic execution. The propagative algorithms in

the following sections will have to insure that only

execution paths are followed.
ALIASING SETS AND PARTITIONS

In this section the nature of the aliasing re-
lation, <E>, induced by a call chain
p: HMAIN - Q1 s Wsry . o Qn is analyzed. As stated
earlier <& is an equivalence relation on the vari-
ables in ADDRESS[Qn]. Let "p be the partition of
ADDRESS[Qn] induced by <25, Each component or equiv-
alence class of the alias partition ™ is termed
an alias set of Q. By definition the variables
in each alias set all refer to the same incarna-
tion.

Let X be a set of variables and E denote the

.)
invocation Qn ---------- >Qn+1(f1,..,fk). Define the

incarnation propagation function, fI’ as follows - -
f(X,E) = (X n GLOBAL[Q, ;]) v { f; I a; e XJ.
Note that fI is monotonic and distributive in the
argument X. The utility of fI is seen in the follow-
ing theorem.

Alias Theorem:Xenp=>fI(X,E)en gr_fI(X,E)=D.

p-E

222

This theorem gives the inductive basis needed to
compute "p for arbitrary p. Given "p and an invoca-
tion E from procedure Qn to Qn+1’ one can infer that

ToeE = {fI(X,E) l|Xe np and fI(X,E) 20}
u{ {x} |]xe LOCAL[Q,,,] - FORHAL[Q.,;1}.

Figure 3 illustrates the construction of several
alias partititons for a simple program.

It is sufficient for algorithmic purposes to
just know all the possible alias sets, I(R), for
each procedure Q. Formally, £(Q) = {X|| 3 callchain
p from MAIN to Q such that X € wp}. A1l the alias
sets can be found by initially stipulating that
every singleton set {x} such that x € LOCAL[Q] -
FORMAL[Q] for some procedure 0 is an alias set of Q
and then repeatedly applying fI to this basis and
its offspring whenever possible until no new alias
sets are generated. A work-list algorithm for this
computation requires time O(SET*INVOKE*(SET+MAXF))
where SET is the number of alias sets, IMVOKE is the
number of call-sites, and MAXF = max(]|FORMAL[P]|).
The O(SET+MAXF) term comes from thg cost of operat-
ing a hash table and computing fI' This term has
0(1) expected behavior.

Thus the total expected

time is O(SET*INVOKE).
VAR

Note that SET is potentially
as large as 0(2') where VAR is the number of var-
jables in the program.

INTER-PROCEDURAL DATA FLOW PROBLEMS

The framework for the inter-procedural Tive and
avail data flow problems is obtained by annotating
each vertex, v, in the super-araph with two sets,
GEN[v] and KILL[v], of tokens. For simplicity it
will henceforth be assumed that the tokens are the
variables of the program, althouah one should realize

that the tokens could be the set of expressions in

the program or some other program entity set. A

NESTING TREE

Q
LOCAL[PI={a]

Q
LocaLiQl={b,c]}

LOCALIR]={d }

Hnull 2
Hl ab c
Hloz abd c
é 4
10304 B b c
n1030402 a b cd
é 4
Hlo3o40204 2 ¢ b

SOME ALIAS PARTITIONS

4 CALL GRAPH
cd R)
f !
Alias Set Procedures of [L
Alias Set
‘ b QR
bd| R ’
R &
DAQQ
(L6 [on

ALL ALIAS SETS AND fs TRANSITIONS

FIGURE 3: ALIAS SETS AND PARTITIONS

variable x is said to be generated at vertex vwhen
x € GEN[v], and x is killed at v when x e KILL[v].
A rigorous formulation of these data flow prob-
lems involve some subtleties not found in their
intra-procedural counterparts [Ken, Cocke]. First,
a variable x can be live or avail at a vertex v in

procedure P's flow graph, only when x & ADDRESS[P].

As stated earlier not every path in the super graph

223

represents an execution sequence. The second point
then is that the path(s) in question must be an ex-
ecution path(s).

The most complicating factor is the existence
of aliases. When one asks if a varjab]e x is live
at a vertex v, one is really asking a question
about the incarnation to which x refers at v. Thus

the definition of Tive must involve the entire

execution path in question, including the part from the

entry vertex of MAIN to the vertex v. The incarna-
tion to which x refers is captured by the following
notation. For an execution path p and variable x,

let SA(x,p) be the alias set of the alias partition
established by p, which refers to the same incarna-
tion that x most recently referred to in the execu-
tion of p. Such an alias set may not exist and in

this case let SA(x,p) = @. The notation SA(x,p) B

SA(x,q) asserts that the two alias sets refer to the

same incarnation.
A formal definition of the 1ive and avail data
flow problems is now possible.

INTER-PROCEDURAL LIVE:

x is live at v iff
x © ADDRESS[procedure containing v]
and 3 execution path p:ENTRY[MAIN] + ... = v (=v) =+

vy e TV
such that SA(x,p;) n GEN[vn] z P

and Sp(x,p,) = Sp(xsp)

and y0<j <n(5A(X,Pj)n KILL[Vj] =9

or Splx,py) # Splx,py))

INTER-PROCEDURAL AVAIL:

x is avail at v iff
x £ ADDRESS[procedure containing v]
and v execution paths p:vo(=ENTRY[MAIN]) v

— vn(=v)
31 such that SA(X’pi) n GEN(vi] 2 0

and Sp(x,p,) = Sp(x,p)

and Vi < j < n (Spx,py) n KILLLv4T = @
or Splx,p,) # SA(x,pj)).
The must and may summary data flow problems are
concerned with summarizing the effects of a pro-

cedure's execution. Each vertex, v, of the super-
*Note: p; Ts the prefix of p from ENTRY[MAIN] to Vi

224

araph is annotated with a single set, AFFECT[V], of
variables. A variable x is said to be affected by

v whenever x e AFFECT[v]. The variable x may be
affected by a procedure P if there is an execution
path through P for which the appropriate incarnation
of x is affected somewhere on this path. The vari-

able x must be affected by P if x is affected on

some vertex of every execution path through P.
Formally - -

MAY SUMMARY PROBLEM:

x may be affected by P iff
3 execution pathp : ENTRY[MAIN]+...->vo(=ENTRY[P]+v1

-V +...+vn(=EXIT[P])

2
for which SA(x,pO) = Spx.pp)
and 31 such that Sp(x,p;) n AFFECT[v.] =
and Sp(x,p) = Sp(x,p;)

MUST SUMIMARY PROBLEM:

x must be affected by P iff
Y execution paths p : ENTRY[MAIN]-+...->v0(=ENTRY[P])->v1

V> v (<EXIT[P])
for which Sp(x,p) = Sp(x,p.)
ER| EEEH.EDEE.SA(X’pi) n AFFECT[vi] z 0
and Sp(x,p) = Sp(x,py)
The may-summary problem has an efficient solu-
tion [Ban] because it does not depend on the intra-

procedural structure of a program. Banning has

termed such problems flow insensitive. The remain-

ing three problems -- live, avail, and must-sum-
mary -- are all flow sensitive and are the focus of
the remainder of the paper.

COMPLEXITY OF THE PROBLEMS:

The theory of NP-compiete problems is well es-
tablished [GJ]. It is the consensus of the math-
ematical community that NP-compiete problems do not

have polynomial-time algorithms. The inter-

procedural live problem is shown to be NP-complete.

The complement of a problem is obtained by ne-
gating the problem statement. For example, the com-
plement of avail, called co-avail, asks if a vari-
able is not avail at a vertex. The co-avail and co-
must problems are NP-complete. Hence, the avail and
must-summary problems are said to be co-NP-complete
[GJ].

To show that a problem is NP-complete it suf-
fices to show that the problem is in NP and that a
known NP-complete problem is polynomially transform-
able to it. The NP-complete problem used here is
the classic 3-satisfiability problem [Cook]. One
is given a set of variables X and a boolean expres-
sion E in 3-Conjunctive Norma1 Form on these vari-
ables. The problem is to determine whether E is
satisfiable; that is,if there is a truth assignment
to the variables in X for which E is true.

Theorem: The inter-procedural live data flow

problem is NP-complete.

Proof: An arbitrary 3-satisfiability problem

must be transformed into a live data flow prob-

lem. Suppose X = {Xl""’xn} and the expression

k —
E =i:1 (Xil+xi2+xi3) where Xij € X uX. The

data flow problem modelling E is depicted in
Figure 4. It is asserted that E is satisfiable
if and only if the variable T is live at the

entry vertex of the main procedure Po' O

Similar proofs show that the avail and must-
summary problems are co-NP-complete. Note that in
the proof above, recursion was not employed. The
presence of just the ALIAS effect makes these prob-
lems NP-complete. Moreover, the problems are poly-
nomial if the SCOPE effect is considered in isola-

tion. The problems are intractable in the

225

presence of aliasing as there may be an exponential
number of alias sets. (Note that this is true for
Figure 4).

THE ITERATIVE SOLUTION:

In this section an iterative solution to the
live data flow problem is presented and related to
the theory of monotone data flow analysis frameworks.
The avail and must-summary problems have similar
solutions. The iterative solution employs an alias
set framework in which alias sets are propagated
instead of variables and in which a propagated alias
set retains enough information aboutits propagation
path to guarantee that only execution paths are
followed.

In the alias set framework, the vertices of the
super graph are annotated with sets of alias sets,
SGEN[v] and SKILL[v] where

SGEN[v] = {X[| X e Z(procedure containing v)

and X n GEN[v] = 0}
SKILL[v] = {X|| X € z(procedure containing v)
and X n XILL[v] = 0}.
The entities that are propagated in this framework
consist of ordered pairs, <X,E>, called alias pairs.
X is an alias set and the component E, called the
memory, is either an edge in the call graph or the
special symbol '*'. Instead of finding the relation

"Tive," the special relation "alias Tive" is desired

and is defined as follows - -
ALIAS LIVE:
<X,E> e SLIVE[v] (reads as "<X,E> is alias 1ive at
vertex v") iff
1 execution path p:ENTRY[MAIN] +...+v0(=v)

TV ey
and variable x such that

and x is Tive at v on path p

(T, F)/
,—.
P(x"x

(TF)/
-
(FT)
P(xz,xz
. F)/\\\\UI/
/
(FT)
l

LOCALLRy= {T,F}

LocaLlr)= {x, X}

——
Vs ~<
N
\
\\
\\ S~/ ,
N /
S
GEN(T]

-7
Ki LL[xu]

—
(F T)

FIGURE 4: IS T LIVE AT ENTRY[PR]?

and

E ={INVOKE[v,_;»v,] for k = min

(CE[p J<RECpq. 13T
1<j<n 0j 03

if k exists

* otherwise

+Note: CE[DOj = the number of call edges on the

subpath of p from Vo to Vj
RE[poj] = the number of return edges.

226

The introduction of the memory component is neces-
sitated by the requirement that propagation is along
execution paths only. From the definiton of E
above, it follows that for any edge e from w into
v, eopoj js an execution path if and only if e is
not a call edge or E e {*,INVOKE[e]}. It should be
clear that this observation provides the necessary

leverage.

The relation between the alias live and Tive prob-

lems is expressed in the following simple theorem.
Theorem: LIVE[v] = u (X|[<X,E>e SLIVE[v])

The iterative solution employs a function IL which

maps a super graph vertex into a set of alias pairs

and a function PL which maps a set of alias pairs

and a super graph edge into another set of alias

pairs. The main theorem is --

Alias Live Theorem: <X,E e SLIVE[v] iff

3pathp:vo(=v)+v1+...+vnsuchthat<X,E>e§L(IﬁvQ,w+

The functions IL and PLaregiven in Figure 5 below.

IL(v) = { <X,* || X e SGEN[v] }
PL(Y,e) =
(1) For simple edge e:
{ <X,E> || X¢ SKILL[v] and <X,E>eY }

(2) For return edge e corresponding
to call graph edge F:

{ <X,F> || X ¢ SKILL[v] and
3<XI,E>€Y(X=fI(XI:F) = g) }
(3) For call edge e corresponding
to call graph edge F:

{ <X,E> || X ¢ SKILL[v] and
((E = * and 3<x',*>¢ Y(X'= fI(X,F))) or
(<X,E> e SLIVE[RPOINT[F]] and

(f(X,F)=Por I<X'F>e ¥ (X' = f,(X,F))))) }

FIRURE 5: ProracaTION FUNCTIONS IL AND PL

The alias set framework for the 1ive problem can

be viewed as an instance of a distributive monotonic

data flow analysis framework [Kildall]. The lattice

consists of the set of all sets of alias pairs of

the program with the meet operator being set union.

P (X,p) = PP LG (PO, v 2V,) eV Y,) vy)

227

The operation space consists of the functions ?b
where for
P=vVg Ve PV

R0 = F (X020

(F (...F
VotV VY, Vn1"Vn

o 1
and Fv»w(x) = PL(X,v+w) U IL(v).

The alias Tlive theorem asserts that the solution to
the alias live problem is the meet over all paths

That is, SLIVELV] = v (F (9)] p

(MOP) solution.
is a path from v to EXIT[MAIN]). The distributive
property of PL implies that the MOP solution is

also the minimum fixed point (MFP) solution to the

set of equations --

SLIVE[v] = v (F,,(SLIVE[W])).

The MFP exists as the lattice is finite and PL is
a monotonic function.

AN EFFICIENT ALGORITHM:

The fact that the alias framework is a monotone
data flow analysis framework allows one to employ
Kildall's general algorithm in solving the live
data flow problem. However, a better algorithm
is'presented.

The first improvement involves reducing the
number of alias sets, SET. Let OCCUR[P] be the
set of variables that occur in the code part of P.
Let PREL be a collection of sets of variables,
REL[P], one for each procedure P in the proaram.

Definition: Ppp s a pruning system iff

(1) v P (REL[P] > OCCUR[P])

and (2) V invocations P + R: (fI(REL[P],P+R)
2 fI(ADDRESS[P],P*R) n REL[R]).

The importance of pruning systems is that whenever
X is an alias set in £(P) one may use the pruned
alias set X n REL[P], in lieu of X as X n REL[P]
2 X n OCCUR[P] and the relevant portion of X is

retained under the mapping fi (condition (2)).

In fact, if one lets fREL(X,P*R)= fI(X,P+R)rwREL[P],
the monotonicity of fI implies that
fREL(XnREL[P],P+R) = fI(X,P+R) n REL[R]. Thus the
mapping fREL has the special property that a pruned
alias set's image under fREL is the pruned image of
the alias set. Thus, as in the previous section,
one may compute all the pruned alias set of a pro-
gram directly using fREL'
The optimal pPruning system for a program con-
sists of the sets
OPTLP] = OCCURLP] u {x||3call chain p:Qy>. .. *Q,
such that x e OCCUR[Qn]
and x ¢ n (GLOBAL[Qi]]Ji =1) }.

The POPT pruning system is optimal in that it con-
sists of the smallest possible sets. The OPT sets
are the minimum fixed points of the system of equa-
tions --

OPT[P] = u (GLOBAL[RIOPT[R] ||P+R) o OCCUR[P].
A round-robin [H] solution to this problem requires
time O(INVOKE®) where INVOKE is the number of edges
in the call graph.

The number of pruned alias sets for the POPf
system is expected to be much smaller than the number
of alias sets. In practice, the number SET is ex-
pected to be O(VAR) when the POPT system is employed.
This expectation arises from the assumption that in
practice OCCUR[P] rarely contains elements which are
aliased.

The second improvement, stems from taking advan-
tage of certain special properties of the propaga-
tion function PL. Suppose an alias pair <X,E> is
alias live at a vertex v. The alias pair is said
to be free at v if E = * apg restricted at v other-
wise. The first observation is that all restricted
alias pairs at vertices within a given procedure P

were propagated from the exit vertex of P. This

228

common origin for restricted alias pairs implies
that the propagation of all restricted alias pairs
with the same alias set can be accomplished by
Propagating just the alias set and an associated
vector of memory components. This factorization
reduces the problem to one of propagating the alias
sets of each free and restricted alias pair. These
representative aljas sets are called the factored

Suppose there is a free and a restricted alias
pair at a vertex v for which the alias sets are
identical. From the properties of PL it follows
that wherever the restricted alias pair is sub-
sequently found to be alias live, the free alias
pair will also be alias live. Thus the second ob-
servation is that free alias pairs Supercede re-
stricted alias pairs whenever they meet at a vertex.

These observations lead to a significant per-
formance increase as there are at most O(SET)
factored alias pairs as opposed to the
O(SET*INVOKE) collection of alias pairs. A work-
list algorithm employing this propagative scheme
runs in time

0(VERTEX+ANOTATE+INVOKE+£ SETP(EDGEP+MAXS)) where

VERTEX = the number of super-graph vertices.

ANOTATE = the sum of the cardinalities of
every GEN and KILL set.

SETp = the number of pruned alias sets of
procedure P.

EDGEp = the number of super graph edges whose
head vertices are in P's flow graph.
MAXS = the cardinality of the largest pruned
alias set.
Note that the parameters SETp, EDGEp, and MAXS tend
to remain constant (or grow quite slowly) as pro-

gram size increases as procedure size tends to

remain constant.

A round-robin algorithm utilizing this approach
has a time bound of O{(R+2)*(SEDGE+SET*INVOKE))
where SEDGE is the number of simple edges in the
super graph and R is the loop interconnectedness
parameter of the super graph. However, this bound ap-
plies only when the super graph is reducible -- a re-
quirement which may not hold very often. If the
super graph is irreducible the R+2 term becomes
EDGE. The round-robin approach is highly parallel
in its operation and works well as long as there
is not a small core of factored alias pairs which
are reticent to stabilize. Empirical studies are
needed to determine which of the two approaches --
round-robin or work-1list -- is superior.
CONCLUSION:

The Tlive, avail, and must summary data flow
problems have been shown to be theoretically
intractable in the inter-procedural context.
Despite this, an iterative approach was developed
to solve each problem which fit into the domain
of monotone data flow analysis frameworks. A prac-
tical algorithm was then presented in which the
degree of exponentiality was reduced to manageable
levels. A work-1ist implementation of this algo-
rithm was seen to have a worst case time bound of
0(VERTEX+ANOTATE+INVOKE+ZpSETp*(EDGEp+MAXS)).
Empirical studies are needed to determine the
effectiveness of this approach. In particular,
how large is SETp in practice? How effective are
the OPT pruning sets? How does performance vary
with program size? Manual studies indicatea reason-
able outcome.

The space requirement for the algorithm is
O(PROC*VAR+SET*INVOKE+VERTEX+EDGE). The super graph

is a large structure. It would be convenient to

229

be able to arrange the solution so that it worked
on a procedure at a time, thus removing the neces-
sity of having the entire super graph in core at
one time. Such an approach is possible, but it is
not yet clear whether it is practical, due to the
space-time tradeoff required. Another option for
reducing the space requirement is to compute fOPT
and fyp- on the fly, thus removing the O(SET*INVOKE)
tables. Again the space-time tradeoffs appear to
be severe.

Another interestina consideration is the inte-
gration of this scheme into data flow problems in-
cluding additional features such as parallelism

and pointer data types.

ACKNOWLEDGMENT :

This author wishes to recoanize the helpful
collaboration of his colleagues -- Lee Osterweil,
Lloyd Fosdick, and Dick Taylor -- at the University

of Colorado.

REFERENCES :

[A] Allen,F.E. "Interprocedural Data Flow
., Analysis." Information Processing 74,
North-Holland Pub. Co., Amsterdam (1974),
398-402.

[Ac] Allen, F.E. and Cocke, J. "A Program Data
Flow Analysis Procedure.” Comm. ACM 19,
3(1976), 137-146.

[Barth] Barth, J.M. "A Practical Interprocedural
Data Flow Analysis Algorithm." Comm. ACM
21, 9(1978), 724-736.

[Ban] Banning, J.P. "An Efficient Way to Find
the Side Effects of Procedure Calls and
the Aliases of Variables." Conf. Rec.
Seventh ACM Symp. Principles of Program-

ming Languages (1980}, 29-41.

[Cocke] Cocke, J. "Global Common Subexpression
Elimination." SIGPLAN Notices 5(1970),
20-24.

[Cook] Cook, S.A. "The Complexity of Theorem
Proving Procedures." Proc. 3rd Annual
ACM Symposium on Theory of Computing
(1971), 151-158.

[FO] Fosdick, L.D. and Osterweil, L.J. "Data
Flow Analysis in Software Reliability."
ACM Computing Surveys 8, 3(1976).

(6]

(ew]

[H]

[Karp]

[Kildal1]

M]

(R1]

(R2]

[s]

(UH]

[uk]

Garey, M.R. and Johnson, D.S. Computers

and Intractibility -- A Guide to the
Theory of NP-CompTeteness. W.H. Freeman
and Co. (1978).

Graham, S.L. and Wegman, M. "A Fast and
Usually Linear Algorithm for Global Flow
Analysis.” J. ACM 23, 1(1976), 172-202.

Hecht, M.S. Flow Analysis of Computer
Programs. North-Holland Pub. Co.,
New York (1977).

Karp, R.M. "A Note on the Application
of Graph Theory to Digital Computer Pro-
gramming." Information and Contro1,
3(1960), 179-190.

Kildall, G.A. "A Unified Approach to
Global Program Optimization." Conf.

Rec. First ACM Symp. Principles of Pro-
gramming Languages {19737, 194-206.

Myers, E.W. "A Precise and Efficient
Algorithm for Determining Existential
Summary Data Flow Information." Tech.
Rep. CU-C5-175-80, Univ. of Colorado,
Boulder, Colo., March 1980.

Rosen, B.K. "High Level Data Flow
Analysis, Pt. 1(Classical Structured
Programming)." Res. Rep. RC5598, IBM
T.J. Watson Res, Ct., Yorktown Heights,
New York, August 1975,

Rosen, B.K. "High Level Data Flow
Analysis, Pt. 2(Escapes and Jumps) ."
Res. Rep. RC5744, IBM T.J. Watson Rec.
Ct., Yorktown Heights, New York, April
1976.

Spillman, T.C. "Exposing Side-Effects
in a PL/1 Optimizing Compiler." Infor-

mation Processing, North-Holland Pub. Co
Amsterdam (19717, 376-381.

Ullman, J.D. and Hecht, M.S. "p Simple

Algorithm for Global Data Flow Analysis

Problems." SIAM J. Computing 4, 4(1975)
519-532.

Ullman, J.D. and Kam, J.B. "Global Data
Flow Analysis and Iterative Algorithms."
J. ACM 23, 1(1976), 158-171.

230

